Toward a Quasi-dynamic Pulsed Field Electroporation Numerical Model for Cardiac Ablation: Predicting Tissue Conductance Changes and Ablation Lesion Patterns.

Richard Simon, Nishaki K Mehta, Kuldeep B Shah, David E Haines, Cristian A Linte
{"title":"Toward a Quasi-dynamic Pulsed Field Electroporation Numerical Model for Cardiac Ablation: Predicting Tissue Conductance Changes and Ablation Lesion Patterns.","authors":"Richard Simon,&nbsp;Nishaki K Mehta,&nbsp;Kuldeep B Shah,&nbsp;David E Haines,&nbsp;Cristian A Linte","doi":"10.22489/CinC.2022.233","DOIUrl":null,"url":null,"abstract":"<p><p>Pulsed field ablation (PFA) has the potential to evolve into an efficient alternative to traditional RF ablation for atrial fibrillation treatment. However, achieving irreversible tissue electroporation is critical to suppressing arrhythmic pathways, raising the need for accurate lesion characterization. To understand the physics behind the tissue response PFA, we propose a quasi-dynamic model that quantifies tissue conductance at end-electroporation and identifies regions that have undergone fully irreversible electroporation (IRE). The model uses several parameters and numerically solves the electrical field diffusion into the tissue by iteratively updating the tissue conductance until equilibrium at end-electroporation. The model yields a steady-state tissue conductance map used to identify the irreversible lesion. We conducted numerical experiments mimicking a lasso catheter featuring nine 3-mm electrodes spaced circumferentially at 3.75 mm and fired sequentially using a 1500 V and 3000 V pulse amplitude. The IRE lesion region has a surface area and volume of 780 mm<sup>2</sup> and 1411 mm<sup>3</sup>, respectively, at 1500 V, and 1178 mm<sup>2</sup> and 2760 mm<sup>3</sup>, respectively, at 3000 V. Lesion discontinuity was observed at 5.0 mm depth with 1500 V, and 7.2 mm depth with 3000 V. This quasi-dynamic model yields tissue conductance maps, predicts irreversible lesion and lesion penumbra at end-electroporation, and confirms larger lesions with higher pulse amplitudes.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"2022 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134894/pdf/nihms-1892746.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pulsed field ablation (PFA) has the potential to evolve into an efficient alternative to traditional RF ablation for atrial fibrillation treatment. However, achieving irreversible tissue electroporation is critical to suppressing arrhythmic pathways, raising the need for accurate lesion characterization. To understand the physics behind the tissue response PFA, we propose a quasi-dynamic model that quantifies tissue conductance at end-electroporation and identifies regions that have undergone fully irreversible electroporation (IRE). The model uses several parameters and numerically solves the electrical field diffusion into the tissue by iteratively updating the tissue conductance until equilibrium at end-electroporation. The model yields a steady-state tissue conductance map used to identify the irreversible lesion. We conducted numerical experiments mimicking a lasso catheter featuring nine 3-mm electrodes spaced circumferentially at 3.75 mm and fired sequentially using a 1500 V and 3000 V pulse amplitude. The IRE lesion region has a surface area and volume of 780 mm2 and 1411 mm3, respectively, at 1500 V, and 1178 mm2 and 2760 mm3, respectively, at 3000 V. Lesion discontinuity was observed at 5.0 mm depth with 1500 V, and 7.2 mm depth with 3000 V. This quasi-dynamic model yields tissue conductance maps, predicts irreversible lesion and lesion penumbra at end-electroporation, and confirms larger lesions with higher pulse amplitudes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心脏消融的准动态脉冲场电穿孔数值模型:预测组织电导变化和消融损伤模式。
脉冲场消融(PFA)有可能发展成为传统射频消融治疗心房颤动的有效替代方案。然而,实现不可逆的组织电穿孔对于抑制心律失常通路至关重要,因此需要准确的病变表征。为了理解组织响应PFA背后的物理原理,我们提出了一个准动态模型,该模型量化了电穿孔末端的组织电导,并确定了经历了完全不可逆电穿孔(IRE)的区域。该模型使用多个参数,通过迭代更新组织电导直到电穿孔末端平衡,数值求解电场扩散到组织中的问题。该模型产生用于识别不可逆病变的稳态组织电导图。我们进行了模拟套索导管的数值实验,该套索导管具有9个3毫米的电极,周间距为3.75毫米,并以1500 V和3000 V的脉冲幅度依次发射。在1500 V下,IRE病变区域的表面积和体积分别为780 mm2和1411 mm3,在3000 V下,IRE病变区域的表面积和体积分别为1178 mm2和2760 mm3。1500 V时在5.0 mm深度处观察到病变不连续,3000 V时在7.2 mm深度处观察到病变不连续。该准动态模型生成组织电导图,预测电穿孔末端的不可逆病变和病变半暗带,并确认较大的病变具有较高的脉冲振幅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Estimation of Myocardial Ischemia Severity Using Body Surface ECG. Machine Learning Prediction of Blood Potassium at Different Time Cutoffs. A Survey of Augmentation Techniques for Enhancing ECG Representation Through Self-Supervised Contrastive Learning. Application of Order and Sample Selection in Uncertainty Quantification of Cardiac Models. Uncertainty Quantification of Fibrotic Conductivity Effects on Computational Model-Derived Ablation of Atypical Left Atrial Flutter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1