Potential Inhibitory Biomolecular Interactions of Natural Compounds With Different Molecular Targets of Diabetes.

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS Bioinformatics and Biology Insights Pub Date : 2023-01-01 DOI:10.1177/11779322231167970
Precious A Akinnusi, Samuel O Olubode, Adebowale A Alade, Aderemi A Ashimi, Olamide L Onawola, Abigail O Agbolade, Adaobi P Emeka, Sidiqat A Shodehinde, Olawole Y Adeniran
{"title":"Potential Inhibitory Biomolecular Interactions of Natural Compounds With Different Molecular Targets of Diabetes.","authors":"Precious A Akinnusi,&nbsp;Samuel O Olubode,&nbsp;Adebowale A Alade,&nbsp;Aderemi A Ashimi,&nbsp;Olamide L Onawola,&nbsp;Abigail O Agbolade,&nbsp;Adaobi P Emeka,&nbsp;Sidiqat A Shodehinde,&nbsp;Olawole Y Adeniran","doi":"10.1177/11779322231167970","DOIUrl":null,"url":null,"abstract":"<p><p>Type II diabetes is an endemic disease and is responsible for approximately 90% to 95% of diabetes cases. The pathophysiological distortions are majorly β-cell dysfunction, insulin resistance, and long-term inflammation, which all progressively unsettle the control of blood glucose levels and trigger microvascular and macrovascular complications. The diverse pathological disruptions which patients with type II diabetes mellitus exhibit precipitate the opinion that different antidiabetic agents, administered in combination, might be required to curb this menace and maintain normal blood glucose. To this end, natural compounds were screened to identify small molecular weight compounds with inhibitory effects on protein tyrosine phosphatase 1B (PTP1B), dipeptidyl-peptidase-4 (DPP-4), and α-amylase. From the result, the top 5 anthocyanins with the highest binding affinity are reported herein. Further ADMET profiling showed moderate pharmacokinetic profiles for these compounds as well as insignificant toxicity. Cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside (-15.272 kcal/mol), cyanidin 3-O-(6\"-malonyl-3\"-glucosyl-glucoside) (-9.691 kcal/mol), and delphinidin 3,5-O-diglucoside (-12.36 kcal/mol) had the highest binding affinities to PTP1B, DPP-4, and α-amylase, respectively, and can be used in combination to control glucose fluctuations. However, validations must be carried out through further <i>in vitro</i> and <i>in vivo</i> tests.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"17 ","pages":"11779322231167970"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e2/f6/10.1177_11779322231167970.PMC10134171.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322231167970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Type II diabetes is an endemic disease and is responsible for approximately 90% to 95% of diabetes cases. The pathophysiological distortions are majorly β-cell dysfunction, insulin resistance, and long-term inflammation, which all progressively unsettle the control of blood glucose levels and trigger microvascular and macrovascular complications. The diverse pathological disruptions which patients with type II diabetes mellitus exhibit precipitate the opinion that different antidiabetic agents, administered in combination, might be required to curb this menace and maintain normal blood glucose. To this end, natural compounds were screened to identify small molecular weight compounds with inhibitory effects on protein tyrosine phosphatase 1B (PTP1B), dipeptidyl-peptidase-4 (DPP-4), and α-amylase. From the result, the top 5 anthocyanins with the highest binding affinity are reported herein. Further ADMET profiling showed moderate pharmacokinetic profiles for these compounds as well as insignificant toxicity. Cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside (-15.272 kcal/mol), cyanidin 3-O-(6"-malonyl-3"-glucosyl-glucoside) (-9.691 kcal/mol), and delphinidin 3,5-O-diglucoside (-12.36 kcal/mol) had the highest binding affinities to PTP1B, DPP-4, and α-amylase, respectively, and can be used in combination to control glucose fluctuations. However, validations must be carried out through further in vitro and in vivo tests.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与糖尿病不同分子靶点的天然化合物的潜在抑制生物分子相互作用。
2型糖尿病是一种地方病,约占糖尿病病例的90%至95%。病理生理扭曲主要是β细胞功能障碍、胰岛素抵抗和长期炎症,这些都逐渐扰乱了血糖水平的控制,引发微血管和大血管并发症。2型糖尿病患者所表现出的各种病理紊乱促使人们认为,可能需要不同的抗糖尿病药物联合使用来抑制这种威胁并维持正常的血糖。为此,对天然化合物进行筛选,筛选出对蛋白酪氨酸磷酸酶1B (PTP1B)、二肽基肽酶-4 (DPP-4)和α-淀粉酶具有抑制作用的小分子量化合物。根据结果,本文报道了结合亲和力最高的前5种花青素。进一步的ADMET分析显示,这些化合物的药代动力学特征适中,毒性不明显。花青素3-(对香豆醇基)-二葡糖苷-5-葡萄糖苷(-15.272 kcal/mol)、花青素3- o -(6′-丙二酰-3′-葡萄糖苷)(-9.691 kcal/mol)和飞鸽苷3,5- o -二葡糖苷(-12.36 kcal/mol)对PTP1B、DPP-4和α-淀粉酶的结合亲和力最高,可联合使用以控制葡萄糖波动。然而,验证必须通过进一步的体外和体内试验进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinformatics and Biology Insights
Bioinformatics and Biology Insights BIOCHEMICAL RESEARCH METHODS-
CiteScore
6.80
自引率
1.70%
发文量
36
审稿时长
8 weeks
期刊介绍: Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.
期刊最新文献
Regulatory Element Analysis and Comparative Genomics Study of Heavy Metal-Resistant Genes in the Complete Genome of Cupriavidus gilardii CR3. Haplotypic Distribution of SARS-CoV-2 Variants in Cases of Intradomiciliary Infection in the State of Rondônia, Western Amazon. The TWW Growth Model and Its Application in the Analysis of Quantitative Polymerase Chain Reaction. Unlocking Benzosampangine's Potential: A Computational Approach to Investigating, Its Role as a PD-L1 Inhibitor in Tumor Immune Evasion via Molecular Docking, Dynamic Simulation, and ADMET Profiling. Drug Repositioning for Scorpion Envenomation Treatment Through Dual Inhibition of Chlorotoxin and Leiurotoxin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1