Simple CRISPR-Cas9 Genome Editing in Saccharomyces cerevisiae

Q2 Biochemistry, Genetics and Molecular Biology Current Protocols in Molecular Biology Pub Date : 2019-10-24 DOI:10.1002/cpmb.110
Marian F. Laughery, John J. Wyrick
{"title":"Simple CRISPR-Cas9 Genome Editing in Saccharomyces cerevisiae","authors":"Marian F. Laughery,&nbsp;John J. Wyrick","doi":"10.1002/cpmb.110","DOIUrl":null,"url":null,"abstract":"<p>CRISPR-Cas9 has emerged as a powerful method for editing the genome in a wide variety of species, since it can generate a specific DNA break when targeted by the Cas9-bound guide RNA. In yeast, Cas9-targeted DNA breaks are used to promote homologous recombination with a mutagenic template DNA, in order to rapidly generate genome edits (e.g., DNA substitutions, insertions, or deletions) encoded in the template DNA. Since repeated Cas9-induced DNA breaks select against unedited cells, Cas9 can be used to generate marker-free genome edits. Here, we describe a simple protocol for constructing Cas9-expressing plasmids containing a user-designed guide RNA, as well as protocols for using these plasmids for efficient genome editing in yeast. © 2019 by John Wiley &amp; Sons, Inc.</p><p><b>Basic Protocol 1</b>: Constructing the guide RNA expression vector</p><p><b>Basic Protocol 2</b>: Preparing double-stranded oligonucleotide repair template</p><p><b>Alternate Protocol 1</b>: Preparing a single-stranded oligonucleotide repair template</p><p><b>Basic Protocol 3</b>: Induce genome editing by co-transformation of yeast</p><p><b>Basic Protocol 4</b>: Screening for edited cells</p><p><b>Basic Protocol 5</b>: Removing sgRNA/CAS9 expression vector</p><p><b>Alternate Protocol 2</b>: Removing pML107-derived sgRNA/CAS9 expression vector</p>","PeriodicalId":10734,"journal":{"name":"Current Protocols in Molecular Biology","volume":"129 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpmb.110","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpmb.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 17

Abstract

CRISPR-Cas9 has emerged as a powerful method for editing the genome in a wide variety of species, since it can generate a specific DNA break when targeted by the Cas9-bound guide RNA. In yeast, Cas9-targeted DNA breaks are used to promote homologous recombination with a mutagenic template DNA, in order to rapidly generate genome edits (e.g., DNA substitutions, insertions, or deletions) encoded in the template DNA. Since repeated Cas9-induced DNA breaks select against unedited cells, Cas9 can be used to generate marker-free genome edits. Here, we describe a simple protocol for constructing Cas9-expressing plasmids containing a user-designed guide RNA, as well as protocols for using these plasmids for efficient genome editing in yeast. © 2019 by John Wiley & Sons, Inc.

Basic Protocol 1: Constructing the guide RNA expression vector

Basic Protocol 2: Preparing double-stranded oligonucleotide repair template

Alternate Protocol 1: Preparing a single-stranded oligonucleotide repair template

Basic Protocol 3: Induce genome editing by co-transformation of yeast

Basic Protocol 4: Screening for edited cells

Basic Protocol 5: Removing sgRNA/CAS9 expression vector

Alternate Protocol 2: Removing pML107-derived sgRNA/CAS9 expression vector

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酿酒酵母的简单CRISPR-Cas9基因组编辑
CRISPR-Cas9已经成为一种强大的编辑多种物种基因组的方法,因为它可以在被cas9结合的引导RNA靶向时产生特定的DNA断裂。在酵母中,cas9靶向DNA断裂用于促进与诱变模板DNA的同源重组,以便快速生成模板DNA编码的基因组编辑(例如DNA替换,插入或删除)。由于重复的Cas9诱导的DNA断裂选择了未编辑的细胞,Cas9可以用来产生无标记的基因组编辑。在这里,我们描述了一种构建含有用户设计的引导RNA的表达cas9的质粒的简单方案,以及使用这些质粒在酵母中进行有效基因组编辑的方案。©2019 by John Wiley &基本方案1:构建引导RNA表达载体基本方案2:制备双链寡核苷酸修复模板备选方案1:制备单链寡核苷酸修复模板基本方案3:通过酵母共转化诱导基因组编辑基本方案4:筛选编辑细胞基本方案5:去除sgRNA/CAS9表达载体备选方案2:去除pml107衍生的sgRNA/CAS9表达载体
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Protocols in Molecular Biology
Current Protocols in Molecular Biology Biochemistry, Genetics and Molecular Biology-Molecular Biology
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Analytical Ultracentrifugation (AUC): An Overview of the Application of Fluorescence and Absorbance AUC to the Study of Biological Macromolecules Reconstitution and Purification of Nucleosomes with Recombinant Histones and Purified DNA Measuring Protein Synthesis in Cultured Cells and Mouse Tissues Using the Non-radioactive SUnSET Assay Base Editing in Human Cells to Produce Single-Nucleotide-Variant Clonal Cell Lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1