Deep Learning-based Prediction of Axial Length Using Ultra-widefield Fundus Photography.

Richul Oh, Eun Kyoung Lee, Kunho Bae, Un Chul Park, Hyeong Gon Yu, Chang Ki Yoon
{"title":"Deep Learning-based Prediction of Axial Length Using Ultra-widefield Fundus Photography.","authors":"Richul Oh,&nbsp;Eun Kyoung Lee,&nbsp;Kunho Bae,&nbsp;Un Chul Park,&nbsp;Hyeong Gon Yu,&nbsp;Chang Ki Yoon","doi":"10.3341/kjo.2022.0059","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a deep learning model that can predict the axial lengths of eyes using ultra-widefield (UWF) fundus photography.</p><p><strong>Methods: </strong>We retrospectively enrolled patients who visited the ophthalmology clinic at the Seoul National University Hospital between September 2018 and December 2021. Patients with axial length measurements and UWF images taken within 3 months of axial length measurement were included in the study. The dataset was divided into a development set and a test set at an 8:2 ratio while maintaining an equal distribution of axial lengths (stratified splitting with binning). We used transfer learning-based on EfficientNet B3 to develop the model. We evaluated the model's performance using mean absolute error (MAE), R-squared (R2), and 95% confidence intervals (CIs). We used vanilla gradient saliency maps to illustrate the regions predominantly used by convolutional neural network.</p><p><strong>Results: </strong>In total, 8,657 UWF retinal fundus images from 3,829 patients (mean age, 63.98 ±15.25 years) were included in the study. The deep learning model predicted the axial lengths of the test dataset with MAE and R2 values of 0.744 mm (95% CI, 0.709-0.779 mm) and 0.815 (95% CI, 0.785-0.840), respectively. The model's accuracy was 73.7%, 95.9%, and 99.2% in prediction, with error margins of ±1.0, ±2.0, and ±3.0 mm, respectively.</p><p><strong>Conclusions: </strong>We developed a deep learning-based model for predicting the axial length from UWF images with good performance.</p>","PeriodicalId":17883,"journal":{"name":"Korean Journal of Ophthalmology : KJO","volume":"37 2","pages":"95-104"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ec/2d/kjo-2022-0059.PMC10151162.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Ophthalmology : KJO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3341/kjo.2022.0059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2

Abstract

Purpose: To develop a deep learning model that can predict the axial lengths of eyes using ultra-widefield (UWF) fundus photography.

Methods: We retrospectively enrolled patients who visited the ophthalmology clinic at the Seoul National University Hospital between September 2018 and December 2021. Patients with axial length measurements and UWF images taken within 3 months of axial length measurement were included in the study. The dataset was divided into a development set and a test set at an 8:2 ratio while maintaining an equal distribution of axial lengths (stratified splitting with binning). We used transfer learning-based on EfficientNet B3 to develop the model. We evaluated the model's performance using mean absolute error (MAE), R-squared (R2), and 95% confidence intervals (CIs). We used vanilla gradient saliency maps to illustrate the regions predominantly used by convolutional neural network.

Results: In total, 8,657 UWF retinal fundus images from 3,829 patients (mean age, 63.98 ±15.25 years) were included in the study. The deep learning model predicted the axial lengths of the test dataset with MAE and R2 values of 0.744 mm (95% CI, 0.709-0.779 mm) and 0.815 (95% CI, 0.785-0.840), respectively. The model's accuracy was 73.7%, 95.9%, and 99.2% in prediction, with error margins of ±1.0, ±2.0, and ±3.0 mm, respectively.

Conclusions: We developed a deep learning-based model for predicting the axial length from UWF images with good performance.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的超宽视场眼底摄影轴向长度预测。
目的:建立一种深度学习模型,利用超广角眼底摄影技术预测眼球轴向长度。方法:回顾性纳入2018年9月至2021年12月在首尔国立大学医院眼科门诊就诊的患者。测量轴长并在测量轴长3个月内拍摄UWF图像的患者被纳入研究。数据集以8:2的比例分为开发集和测试集,同时保持轴向长度的均匀分布(分层分割与分箱)。我们使用基于effentnet B3的迁移学习来开发模型。我们使用平均绝对误差(MAE)、r平方(R2)和95%置信区间(CIs)来评估模型的性能。我们使用香草梯度显著性图来说明卷积神经网络主要使用的区域。结果:共纳入3829例(平均年龄63.98±15.25岁)UWF视网膜眼底图像8657张。深度学习模型预测测试数据集轴向长度的MAE和R2值分别为0.744 mm (95% CI, 0.709-0.779 mm)和0.815 (95% CI, 0.785-0.840)。模型预测准确率分别为73.7%、95.9%和99.2%,误差范围分别为±1.0、±2.0和±3.0 mm。结论:我们开发了一个基于深度学习的模型来预测UWF图像的轴向长度,并且具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Korean Journal of Ophthalmology : KJO
Korean Journal of Ophthalmology : KJO Medicine-Ophthalmology
CiteScore
2.40
自引率
0.00%
发文量
84
期刊最新文献
Restoration of Corneal Transparency in a Patient with Corneal Scarring Using Mesenchyme Stem Cells: A Case Report. One-Year Outcomes of Ab Externo XEN45 Gel Stent Implantation with an Open Conjunctiva Approach in Patients with Open-Angle Glaucoma. Comparison of Accuracy of Six Modern Intraocular Lens Power Calculation Formulas. Clinical Outcomes of Descemet Membrane Endothelial Keratoplasty Using a Preloaded Imported Graft. Short-term Efficacy and Safety of Intravitreal Brolucizumab Injection for Treatment-Naive Exudate Age-related Macular Degeneration: A Multicenter Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1