Genetic control of grain amino acid composition in a UK soft wheat mapping population.

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Plant Genome Pub Date : 2023-12-01 Epub Date: 2023-05-03 DOI:10.1002/tpg2.20335
Joseph Oddy, Monika Chhetry, Rajani Awal, John Addy, Mark Wilkinson, Dan Smith, Robert King, Chris Hall, Rebecca Testa, Eve Murray, Sarah Raffan, Tanya Y Curtis, Luzie Wingen, Simon Griffiths, Simon Berry, J Stephen Elmore, Nicholas Cryer, Isabel Moreira de Almeida, Nigel G Halford
{"title":"Genetic control of grain amino acid composition in a UK soft wheat mapping population.","authors":"Joseph Oddy, Monika Chhetry, Rajani Awal, John Addy, Mark Wilkinson, Dan Smith, Robert King, Chris Hall, Rebecca Testa, Eve Murray, Sarah Raffan, Tanya Y Curtis, Luzie Wingen, Simon Griffiths, Simon Berry, J Stephen Elmore, Nicholas Cryer, Isabel Moreira de Almeida, Nigel G Halford","doi":"10.1002/tpg2.20335","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat (Triticum aestivum L.) is a major source of nutrients for populations across the globe, but the amino acid composition of wheat grain does not provide optimal nutrition. The nutritional value of wheat grain is limited by low concentrations of lysine (the most limiting essential amino acid) and high concentrations of free asparagine (precursor to the processing contaminant acrylamide). There are currently few available solutions for asparagine reduction and lysine biofortification through breeding. In this study, we investigated the genetic architecture controlling grain free amino acid composition and its relationship to other traits in a Robigus × Claire doubled haploid population. Multivariate analysis of amino acids and other traits showed that the two groups are largely independent of one another, with the largest effect on amino acids being from the environment. Linkage analysis of the population allowed identification of quantitative trait loci (QTL) controlling free amino acids and other traits, and this was compared against genomic prediction methods. Following identification of a QTL controlling free lysine content, wheat pangenome resources facilitated analysis of candidate genes in this region of the genome. These findings can be used to select appropriate strategies for lysine biofortification and free asparagine reduction in wheat breeding programs.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20335","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Wheat (Triticum aestivum L.) is a major source of nutrients for populations across the globe, but the amino acid composition of wheat grain does not provide optimal nutrition. The nutritional value of wheat grain is limited by low concentrations of lysine (the most limiting essential amino acid) and high concentrations of free asparagine (precursor to the processing contaminant acrylamide). There are currently few available solutions for asparagine reduction and lysine biofortification through breeding. In this study, we investigated the genetic architecture controlling grain free amino acid composition and its relationship to other traits in a Robigus × Claire doubled haploid population. Multivariate analysis of amino acids and other traits showed that the two groups are largely independent of one another, with the largest effect on amino acids being from the environment. Linkage analysis of the population allowed identification of quantitative trait loci (QTL) controlling free amino acids and other traits, and this was compared against genomic prediction methods. Following identification of a QTL controlling free lysine content, wheat pangenome resources facilitated analysis of candidate genes in this region of the genome. These findings can be used to select appropriate strategies for lysine biofortification and free asparagine reduction in wheat breeding programs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
英国软质小麦图谱群体中谷物氨基酸组成的遗传控制。
小麦(Triticum aestivum L.)是全球人口的主要营养来源,但小麦籽粒的氨基酸组成并不能提供最佳营养。小麦谷物的营养价值受限于低浓度的赖氨酸(最限制性的必需氨基酸)和高浓度的游离天门冬酰胺(加工污染物丙烯酰胺的前体)。目前,通过育种减少天门冬酰胺和赖氨酸生物强化的可用解决方案很少。在本研究中,我们研究了控制谷物游离氨基酸组成的遗传结构及其与 Robigus × Claire 双倍单倍体群体中其他性状的关系。氨基酸和其他性状的多变量分析表明,这两个群体在很大程度上相互独立,环境对氨基酸的影响最大。通过对群体进行连锁分析,确定了控制游离氨基酸和其他性状的数量性状位点(QTL),并与基因组预测方法进行了比较。在确定了控制游离赖氨酸含量的 QTL 之后,小麦泛基因组资源有助于分析基因组这一区域的候选基因。这些发现可用于在小麦育种计划中选择适当的赖氨酸生物强化和游离天冬酰胺减少策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Genome
Plant Genome PLANT SCIENCES-GENETICS & HEREDITY
CiteScore
6.00
自引率
4.80%
发文量
93
审稿时长
>12 weeks
期刊介绍: The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.
期刊最新文献
Identification of the sweet orange (Citrus sinensis) bHLH gene family and the role of CsbHLH55 and CsbHLH87 in regulating salt stress. Genome-wide analysis of HD-Zip genes in Sophora alopecuroides and their role in salt stress response. Improving complex agronomic and domestication traits in the perennial grain crop intermediate wheatgrass with genetic mapping and genomic prediction. Chromosome-scale Salvia hispanica L. (Chia) genome assembly reveals rampant Salvia interspecies introgression. Elucidation of the genetic architecture of water absorption capacity in hard winter wheat through genome wide association study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1