Using UncertainSCI to Quantify Uncertainty in Cardiac Simulations.

Lindsay C Rupp, Zexin Liu, Jake A Bergquist, Sumientra Rampersad, Dan White, Jess D Tate, Dana H Brooks, Akil Narayan, Rob S MacLeod
{"title":"Using UncertainSCI to Quantify Uncertainty in Cardiac Simulations.","authors":"Lindsay C Rupp,&nbsp;Zexin Liu,&nbsp;Jake A Bergquist,&nbsp;Sumientra Rampersad,&nbsp;Dan White,&nbsp;Jess D Tate,&nbsp;Dana H Brooks,&nbsp;Akil Narayan,&nbsp;Rob S MacLeod","doi":"10.22489/cinc.2020.275","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac simulations have become increasingly accurate at representing physiological processes. However, simulations often fail to capture the impact of parameter uncertainty in predictions. Uncertainty quantification (UQ) is a set of techniques that captures variability in simulation output based on model assumptions. Although many UQ methods exist, practical implementation can be challenging. We created UncertainSCI, a UQ framework that uses polynomial chaos (PC) expansion to model the forward stochastic error in simulations parameterized with random variables. UncertainSCI uses non-intrusive methods that parsimoniously explores parameter space. The result is an efficient, stable, and accurate PC emulator that can be analyzed to compute output statistics. We created a Python API to run UncertainSCI, minimizing user inputs needed to guide the UQ process. We have implemented UncertainSCI to: (1) quantify the sensitivity of computed torso potentials using the boundary element method to uncertainty in the heart position, and (2) quantify the sensitivity of computed torso potentials using the finite element method to uncertainty in the conductivities of biological tissues. With UncertainSCI, it is possible to evaluate the robustness of simulations to parameter uncertainty and establish realistic expectations on the accuracy of the model results and the clinical guidance they can provide.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"47 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956381/pdf/nihms-1836950.pdf","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2020.275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Cardiac simulations have become increasingly accurate at representing physiological processes. However, simulations often fail to capture the impact of parameter uncertainty in predictions. Uncertainty quantification (UQ) is a set of techniques that captures variability in simulation output based on model assumptions. Although many UQ methods exist, practical implementation can be challenging. We created UncertainSCI, a UQ framework that uses polynomial chaos (PC) expansion to model the forward stochastic error in simulations parameterized with random variables. UncertainSCI uses non-intrusive methods that parsimoniously explores parameter space. The result is an efficient, stable, and accurate PC emulator that can be analyzed to compute output statistics. We created a Python API to run UncertainSCI, minimizing user inputs needed to guide the UQ process. We have implemented UncertainSCI to: (1) quantify the sensitivity of computed torso potentials using the boundary element method to uncertainty in the heart position, and (2) quantify the sensitivity of computed torso potentials using the finite element method to uncertainty in the conductivities of biological tissues. With UncertainSCI, it is possible to evaluate the robustness of simulations to parameter uncertainty and establish realistic expectations on the accuracy of the model results and the clinical guidance they can provide.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用不确定性sci量化心脏模拟中的不确定性。
心脏模拟在表现生理过程方面变得越来越准确。然而,模拟常常不能捕捉到预测中参数不确定性的影响。不确定性量化(UQ)是一组捕捉基于模型假设的模拟输出变异性的技术。尽管存在许多UQ方法,但实际实现可能具有挑战性。我们创建了ununcertainty sci,这是一个UQ框架,它使用多项式混沌(PC)展开来模拟随机变量参数化仿真中的前向随机误差。不确定性sci使用非侵入性方法,简化了对参数空间的探索。结果是一个高效,稳定,准确的PC仿真器,可以分析计算输出统计数据。我们创建了一个Python API来运行undeterminessci,最大限度地减少了引导UQ过程所需的用户输入。我们已经实施了不确定性sci:(1)使用边界元方法量化计算躯干电位对心脏位置不确定性的敏感性,(2)使用有限元方法量化计算躯干电位对生物组织电导率不确定性的敏感性。使用不确定性sci,可以评估模拟参数不确定性的稳健性,并对模型结果的准确性和它们可以提供的临床指导建立现实的期望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for Improved Classification of Drivers in Atrial Fibrillation. Effects of Biventricular Pacing Locations on Anti-Tachycardia Pacing Success in a Patient-Specific Model. Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms. Capturing the Influence of Conduction Velocity on Epicardial Activation Patterns Using Uncertainty Quantification. Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1