Chang-Won Lee, Mahesh Kc, John M Ngunjiri, Amir Ghorbani, Kichoon Lee
{"title":"TLR3 and MDA5 Knockout DF-1 cells Enhance Replication of Avian Orthoavulavirus 1.","authors":"Chang-Won Lee, Mahesh Kc, John M Ngunjiri, Amir Ghorbani, Kichoon Lee","doi":"10.1637/aviandiseases-D-22-00065","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the essential role of innate immunity in defining the outcome of viral infections, the roles played by different components of the avian innate immune system are poorly delineated. Here, we investigated the potential implication of avian toll-like receptor (TLR) 3 (TLR3) and melanoma differentiation-associated (MDA) gene 5 (MDA5) receptors of double-stranded RNA (dsRNA) in induction of the interferon pathway and avian orthoavulavirus 1 (AOAV-1) replication in chicken-origin DF-1 fibroblast cells. TLR3 and MDA5 knockout (KO) DF-1 cells were generated using our avian-specific CRISPR/Cas9 system and stimulated with a synthetic dsRNA ligand polyinosinic:polycytidylic acid [poly(I:C)] or infected with AOAV-1 (previously known as Newcastle disease virus). Poly(I:C) treatment in cell culture media resulted in significant upregulation of interferon (IFN)α, IFNβ, and Mx1 gene expression in wild type (WT) DF-1 cells but not in TLR3-MDA5 double KO cells. Interestingly, poly(I:C) treatment induced rapid cell degeneration in WT and MDA5 KO cells, but not in TLR3 knockout or TRL3-MDA5 double knockout (DKO) cells, directly linking poly(I:C)-induced cell degeneration to TLR3-mediated host response. The double knockout cells supported significantly higher replication of AOAV-1 virus than did the WT cells. However, no correlation between the level of virus replication and type I IFN response was observed. Our study suggests that innate immune response is host- and pathogen specific, and further investigation is needed to understand the relevance of dsRNA receptor-mediated immune responses in viral replication and pathogenesis in avian species.</p>","PeriodicalId":8667,"journal":{"name":"Avian Diseases","volume":"67 1","pages":"94-101"},"PeriodicalIF":1.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avian Diseases","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1637/aviandiseases-D-22-00065","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Despite the essential role of innate immunity in defining the outcome of viral infections, the roles played by different components of the avian innate immune system are poorly delineated. Here, we investigated the potential implication of avian toll-like receptor (TLR) 3 (TLR3) and melanoma differentiation-associated (MDA) gene 5 (MDA5) receptors of double-stranded RNA (dsRNA) in induction of the interferon pathway and avian orthoavulavirus 1 (AOAV-1) replication in chicken-origin DF-1 fibroblast cells. TLR3 and MDA5 knockout (KO) DF-1 cells were generated using our avian-specific CRISPR/Cas9 system and stimulated with a synthetic dsRNA ligand polyinosinic:polycytidylic acid [poly(I:C)] or infected with AOAV-1 (previously known as Newcastle disease virus). Poly(I:C) treatment in cell culture media resulted in significant upregulation of interferon (IFN)α, IFNβ, and Mx1 gene expression in wild type (WT) DF-1 cells but not in TLR3-MDA5 double KO cells. Interestingly, poly(I:C) treatment induced rapid cell degeneration in WT and MDA5 KO cells, but not in TLR3 knockout or TRL3-MDA5 double knockout (DKO) cells, directly linking poly(I:C)-induced cell degeneration to TLR3-mediated host response. The double knockout cells supported significantly higher replication of AOAV-1 virus than did the WT cells. However, no correlation between the level of virus replication and type I IFN response was observed. Our study suggests that innate immune response is host- and pathogen specific, and further investigation is needed to understand the relevance of dsRNA receptor-mediated immune responses in viral replication and pathogenesis in avian species.
期刊介绍:
Avian Diseases is an international journal dedicated to publishing original basic or clinical research of the highest quality from various disciplines including microbiology, immunology, pathology and epidemiology. Papers on avian diseases relevant to etiology, pathogenesis, diagnosis, treatment, and control are accepted. Manuscripts dealing with avian species other than poultry will be considered only if the subject is relevant to poultry health.