{"title":"Cusp Density and Commensurability of Non-arithmetic Hyperbolic Coxeter Orbifolds.","authors":"Edoardo Dotti, Simon T Drewitz, Ruth Kellerhals","doi":"10.1007/s00454-022-00455-z","DOIUrl":null,"url":null,"abstract":"<p><p>For three distinct infinite families <math><mrow><mo>(</mo> <msub><mi>R</mi> <mi>m</mi></msub> <mo>)</mo></mrow> </math> , <math><mrow><mo>(</mo> <msub><mi>S</mi> <mi>m</mi></msub> <mo>)</mo></mrow> </math> , and <math><mrow><mo>(</mo> <msub><mi>T</mi> <mi>m</mi></msub> <mo>)</mo></mrow> </math> of non-arithmetic 1-cusped hyperbolic Coxeter 3-orbifolds, we prove incommensurability for a pair of elements <math><msub><mi>X</mi> <mi>k</mi></msub> </math> and <math><msub><mi>Y</mi> <mi>l</mi></msub> </math> belonging to the same sequence and for most pairs belonging two different ones. We investigate this problem first by means of the Vinberg space and the Vinberg form, a quadratic space associated to each of the corresponding fundamental Coxeter prism groups, which allows us to deduce some partial results. The complete proof is based on the analytic behavior of another commensurability invariant. It is given by the cusp density, and we prove and exploit its strict monotonicity.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"69 3","pages":"873-895"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984359/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-022-00455-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
For three distinct infinite families , , and of non-arithmetic 1-cusped hyperbolic Coxeter 3-orbifolds, we prove incommensurability for a pair of elements and belonging to the same sequence and for most pairs belonging two different ones. We investigate this problem first by means of the Vinberg space and the Vinberg form, a quadratic space associated to each of the corresponding fundamental Coxeter prism groups, which allows us to deduce some partial results. The complete proof is based on the analytic behavior of another commensurability invariant. It is given by the cusp density, and we prove and exploit its strict monotonicity.
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.