Engineered models of the lymphatic vascular system: Past, present, and future

IF 1.9 4区 医学 Q3 HEMATOLOGY Microcirculation Pub Date : 2022-11-22 DOI:10.1111/micc.12793
Amirali Selahi, Abhishek Jain
{"title":"Engineered models of the lymphatic vascular system: Past, present, and future","authors":"Amirali Selahi,&nbsp;Abhishek Jain","doi":"10.1111/micc.12793","DOIUrl":null,"url":null,"abstract":"<p>The lymphatic vascular system is crucial for optimizing body fluid level, regulating immune function, and transporting lipid. Relative to the experimental models to investigate blood vasculature, there are significantly fewer tools to explore lymphatics. Although in vivo studies have contributed to major discoveries in the field, finding and characterizing lymphatic specific markers has opened the door to isolating lymphatic vessels and cells for building ex vivo and in vitro platforms. These preparations have enabled the study and analysis of lymphatic vasculature in various physiological and pathophysiological conditions leading to a better understanding of cellular expressions and signaling. In this review, a broad range of ex vivo and in vitro engineered models are highlighted and categorized based on the major lymphatic function they model including contractile function, inflammation, drainage and immune regulation, lymphangiogenesis, and tumor-lymphatic interactions. Then, the novel 3D engineered tissues are introduced consisting of acellularized scaffolds and hydrogels to form vessels and cellular structures close to in vivo morphology. This paper also compares traditional in vitro methods with recent technologies and elaborates on the inherent advantages and limitations of each preparation by critically discussing simplest to most complex tissue-cellular structures. It concludes with an outlook of the lymphatic vasculature models and the possible future direction of contemporary tools, such as organ-on-chips.</p>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microcirculation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/micc.12793","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

The lymphatic vascular system is crucial for optimizing body fluid level, regulating immune function, and transporting lipid. Relative to the experimental models to investigate blood vasculature, there are significantly fewer tools to explore lymphatics. Although in vivo studies have contributed to major discoveries in the field, finding and characterizing lymphatic specific markers has opened the door to isolating lymphatic vessels and cells for building ex vivo and in vitro platforms. These preparations have enabled the study and analysis of lymphatic vasculature in various physiological and pathophysiological conditions leading to a better understanding of cellular expressions and signaling. In this review, a broad range of ex vivo and in vitro engineered models are highlighted and categorized based on the major lymphatic function they model including contractile function, inflammation, drainage and immune regulation, lymphangiogenesis, and tumor-lymphatic interactions. Then, the novel 3D engineered tissues are introduced consisting of acellularized scaffolds and hydrogels to form vessels and cellular structures close to in vivo morphology. This paper also compares traditional in vitro methods with recent technologies and elaborates on the inherent advantages and limitations of each preparation by critically discussing simplest to most complex tissue-cellular structures. It concludes with an outlook of the lymphatic vasculature models and the possible future direction of contemporary tools, such as organ-on-chips.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
淋巴血管系统的工程模型:过去、现在和未来
淋巴血管系统对优化体液水平、调节免疫功能和运输脂质至关重要。相对于研究血管系统的实验模型,研究淋巴管的工具明显较少。尽管体内研究为该领域的重大发现做出了贡献,但淋巴特异性标记物的发现和表征为分离淋巴管和细胞以建立离体和体外平台打开了大门。这些制剂使淋巴血管在各种生理和病理生理条件下的研究和分析成为可能,从而更好地理解细胞表达和信号传导。在这篇综述中,广泛的体外和体外工程模型被强调和分类基于主要淋巴功能,包括收缩功能,炎症,引流和免疫调节,淋巴管生成和肿瘤-淋巴相互作用。然后,介绍了由脱细胞支架和水凝胶组成的新型三维工程组织,以形成接近体内形态的血管和细胞结构。本文还比较了传统的体外方法与最近的技术,并通过批判性地讨论最简单到最复杂的组织细胞结构,详细阐述了每种制备方法的固有优点和局限性。最后展望了淋巴血管模型和当代工具(如器官芯片)可能的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microcirculation
Microcirculation 医学-外周血管病
CiteScore
5.00
自引率
4.20%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal features original contributions that are the result of investigations contributing significant new information relating to the vascular and lymphatic microcirculation addressed at the intact animal, organ, cellular, or molecular level. Papers describe applications of the methods of physiology, biophysics, bioengineering, genetics, cell biology, biochemistry, and molecular biology to problems in microcirculation. Microcirculation also publishes state-of-the-art reviews that address frontier areas or new advances in technology in the fields of microcirculatory disease and function. Specific areas of interest include: Angiogenesis, growth and remodeling; Transport and exchange of gasses and solutes; Rheology and biorheology; Endothelial cell biology and metabolism; Interactions between endothelium, smooth muscle, parenchymal cells, leukocytes and platelets; Regulation of vasomotor tone; and Microvascular structures, imaging and morphometry. Papers also describe innovations in experimental techniques and instrumentation for studying all aspects of microcirculatory structure and function.
期刊最新文献
Brain Microvascular Pericyte Pathology Linking Alzheimer's Disease to Diabetes. Imaging Hypoxia to Predict Primary Neuronal Cell Damage in Branch Retinal Artery Occlusion. Vascular Function and Ion Channels in Alzheimer's Disease. Different Measures of Hyperglycemia Are Negatively Associated With Skin Microvascular Flowmotion: The Maastricht Study. Ninjin'yoeito Modulates Baseline and Reperfusion-Induced Changes in the Arteriole Diameter and Blood Flow in the Cerebral Cortex of Anesthetized Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1