EM-Gaze: eye context correlation and metric learning for gaze estimation.

4区 计算机科学 Q1 Arts and Humanities Visual Computing for Industry, Biomedicine, and Art Pub Date : 2023-05-05 DOI:10.1186/s42492-023-00135-6
Jinchao Zhou, Guoan Li, Feng Shi, Xiaoyan Guo, Pengfei Wan, Miao Wang
{"title":"EM-Gaze: eye context correlation and metric learning for gaze estimation.","authors":"Jinchao Zhou, Guoan Li, Feng Shi, Xiaoyan Guo, Pengfei Wan, Miao Wang","doi":"10.1186/s42492-023-00135-6","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, deep learning techniques have been used to estimate gaze-a significant task in computer vision and human-computer interaction. Previous studies have made significant achievements in predicting 2D or 3D gazes from monocular face images. This study presents a deep neural network for 2D gaze estimation on mobile devices. It achieves state-of-the-art 2D gaze point regression error, while significantly improving gaze classification error on quadrant divisions of the display. To this end, an efficient attention-based module that correlates and fuses the left and right eye contextual features is first proposed to improve gaze point regression performance. Subsequently, through a unified perspective for gaze estimation, metric learning for gaze classification on quadrant divisions is incorporated as additional supervision. Consequently, both gaze point regression and quadrant classification performances are improved. The experiments demonstrate that the proposed method outperforms existing gaze-estimation methods on the GazeCapture and MPIIFaceGaze datasets.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"6 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163188/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-023-00135-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, deep learning techniques have been used to estimate gaze-a significant task in computer vision and human-computer interaction. Previous studies have made significant achievements in predicting 2D or 3D gazes from monocular face images. This study presents a deep neural network for 2D gaze estimation on mobile devices. It achieves state-of-the-art 2D gaze point regression error, while significantly improving gaze classification error on quadrant divisions of the display. To this end, an efficient attention-based module that correlates and fuses the left and right eye contextual features is first proposed to improve gaze point regression performance. Subsequently, through a unified perspective for gaze estimation, metric learning for gaze classification on quadrant divisions is incorporated as additional supervision. Consequently, both gaze point regression and quadrant classification performances are improved. The experiments demonstrate that the proposed method outperforms existing gaze-estimation methods on the GazeCapture and MPIIFaceGaze datasets.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EM-Gaze:用于凝视估计的眼球上下文相关性和度量学习。
近年来,深度学习技术已被用于估计凝视--这是计算机视觉和人机交互中的一项重要任务。以往的研究在从单目人脸图像预测 2D 或 3D 注视方面取得了重大成就。本研究提出了一种用于移动设备 2D 注视估计的深度神经网络。它实现了最先进的二维注视点回归误差,同时显著改善了显示屏象限划分上的注视分类误差。为此,我们首先提出了一种基于注意力的高效模块,它能关联并融合左右眼的上下文特征,从而提高注视点回归性能。随后,通过统一的注视估计视角,将用于象限划分的注视分类的度量学习作为附加监督纳入其中。因此,注视点回归和象限分类的性能都得到了提高。实验证明,在 GazeCapture 和 MPIIFaceGaze 数据集上,所提出的方法优于现有的注视估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Visual Computing for Industry, Biomedicine, and Art
Visual Computing for Industry, Biomedicine, and Art Arts and Humanities-Visual Arts and Performing Arts
CiteScore
5.60
自引率
0.00%
发文量
28
审稿时长
5 weeks
期刊最新文献
Discrimination between leucine-rich glioma-inactivated 1 antibody encephalitis and gamma-aminobutyric acid B receptor antibody encephalitis based on ResNet18. Hyperparameter optimization for cardiovascular disease data-driven prognostic system. Survey of methods and principles in three-dimensional reconstruction from two-dimensional medical images. Vision transformer architecture and applications in digital health: a tutorial and survey. DB-DCAFN: dual-branch deformable cross-attention fusion network for bacterial segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1