Forward Operator Estimation in Generative Models with Kernel Transfer Operators.

Zhichun Huang, Rudrasis Chakraborty, Vikas Singh
{"title":"Forward Operator Estimation in Generative Models with Kernel Transfer Operators.","authors":"Zhichun Huang, Rudrasis Chakraborty, Vikas Singh","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Generative models (e.g., variational autoencoders, flow-based generative models, GANs) usually involve finding a mapping from a known distribution, e.g. Gaussian, to an estimate of the unknown data-generating distribution. This process is often carried out by searching over a class of non-linear functions (e.g., representable by a deep neural network). While effective in practice, the associated runtime/memory costs can increase rapidly, and will depend on the performance desired in an application. We propose a much cheaper (and simpler) strategy to estimate this mapping based on adapting known results in kernel transfer operators. We show that if some compromise in functionality (and scalability) is acceptable, our proposed formulation enables highly efficient distribution approximation and sampling, and offers surprisingly good empirical performance which compares favorably with powerful baselines.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"162 ","pages":"9148-9172"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150593/pdf/nihms-1894539.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative models (e.g., variational autoencoders, flow-based generative models, GANs) usually involve finding a mapping from a known distribution, e.g. Gaussian, to an estimate of the unknown data-generating distribution. This process is often carried out by searching over a class of non-linear functions (e.g., representable by a deep neural network). While effective in practice, the associated runtime/memory costs can increase rapidly, and will depend on the performance desired in an application. We propose a much cheaper (and simpler) strategy to estimate this mapping based on adapting known results in kernel transfer operators. We show that if some compromise in functionality (and scalability) is acceptable, our proposed formulation enables highly efficient distribution approximation and sampling, and offers surprisingly good empirical performance which compares favorably with powerful baselines.

Abstract Image

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用核转移算子的生成模型中的前向算子估计。
生成模型(如变异自动编码器、基于流的生成模型、GAN)通常涉及从已知分布(如高斯分布)到未知数据生成分布估计值的映射。这一过程通常是通过搜索一类非线性函数(如可由深度神经网络表示的函数)来实现的。虽然在实践中很有效,但相关的运行时间/内存成本会迅速增加,而且取决于应用所需的性能。我们根据内核转移算子的已知结果,提出了一种更便宜(也更简单)的策略来估计这种映射。我们的研究表明,如果在功能性(和可扩展性)上做出一些妥协是可以接受的,那么我们提出的方案就能实现高效的分布逼近和采样,并提供出人意料的良好经验性能,与强大的基线相比毫不逊色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning for Clinical Outcome Prediction with Partial Data Sources. Multi-Source Conformal Inference Under Distribution Shift. DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation. Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters. Adapt and Diffuse: Sample-Adaptive Reconstruction Via Latent Diffusion Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1