Stimulus-Response Compatibility During Fighting Task Simulation: Influences of the Opponent's Spatial Codes on the Accuracy and Response Time.

IF 0.9 4区 医学 Q4 NEUROSCIENCES Motor Control Pub Date : 2023-05-08 Print Date: 2023-10-01 DOI:10.1123/mc.2022-0044
Andreza Abreus de Moura, Leonardo José Mataruna-Dos-Santos, Erick Francisco Quintas Conde
{"title":"Stimulus-Response Compatibility During Fighting Task Simulation: Influences of the Opponent's Spatial Codes on the Accuracy and Response Time.","authors":"Andreza Abreus de Moura,&nbsp;Leonardo José Mataruna-Dos-Santos,&nbsp;Erick Francisco Quintas Conde","doi":"10.1123/mc.2022-0044","DOIUrl":null,"url":null,"abstract":"<p><p>Manual Reaction Time measures have been widely used to study interactions between perceptual, cognitive, and motor functions. The Stimulus-Response Compatibility is a phenomenon characterized through faster Manual Reaction Times when stimuli and response locations coincide (correspondent condition) than when they are on different sides (noncorrespondent condition). The present study adapted a protocol to study if the Stimulus-Response Compatibility effect can be detected during a virtual combat simulation. Twenty-seven participants were instructed to defend themselves by clicking a key in order to block the presented punch. Videos of two fighters were used, granting two types of basic strokes: the back fist, a punch performed with the dorsal part of the fighter's hand, starting at the opposite side to which it is directed; and the hook punch, performed with a clenched fist starting and finishing ipsilaterally. The Manual Reaction Times were different between the correspondent and noncorrespondent conditions, F(1, 26) = 9.925; p < .004; η2 = .276, with an Stimulus-Response Compatibility effect of 72 ms. Errors were also different, F(1, 26) = 23.199; p < .001; η2 = .472, between the correspondent (13%) and the noncorrespondent conditions (23%). The study concluded that spatial codes presented at the beginning of the punch movement perception substantially influenced the response execution.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Motor Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/mc.2022-0044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Manual Reaction Time measures have been widely used to study interactions between perceptual, cognitive, and motor functions. The Stimulus-Response Compatibility is a phenomenon characterized through faster Manual Reaction Times when stimuli and response locations coincide (correspondent condition) than when they are on different sides (noncorrespondent condition). The present study adapted a protocol to study if the Stimulus-Response Compatibility effect can be detected during a virtual combat simulation. Twenty-seven participants were instructed to defend themselves by clicking a key in order to block the presented punch. Videos of two fighters were used, granting two types of basic strokes: the back fist, a punch performed with the dorsal part of the fighter's hand, starting at the opposite side to which it is directed; and the hook punch, performed with a clenched fist starting and finishing ipsilaterally. The Manual Reaction Times were different between the correspondent and noncorrespondent conditions, F(1, 26) = 9.925; p < .004; η2 = .276, with an Stimulus-Response Compatibility effect of 72 ms. Errors were also different, F(1, 26) = 23.199; p < .001; η2 = .472, between the correspondent (13%) and the noncorrespondent conditions (23%). The study concluded that spatial codes presented at the beginning of the punch movement perception substantially influenced the response execution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作战任务模拟中的刺激响应兼容性:对方空间码对准确性和响应时间的影响。
手动反应时间测量已被广泛用于研究感知、认知和运动功能之间的相互作用。刺激反应相容性是一种现象,其特征是当刺激和反应位置一致(对应条件)时,手动反应时间比它们在不同侧(非对应条件)更快。本研究采用了一种协议来研究是否可以在虚拟作战模拟中检测到刺激反应兼容性效应。27名参与者被要求通过点击一个键来保护自己,以阻止所展示的拳头。使用了两名拳击手的视频,给出了两种基本的击球方式:后拳,用拳击手的手背进行的一拳,从其指向的对面开始;和钩拳,用握紧的拳头在同侧开始和结束。对应和非对应条件下的手动反应时间不同,F(1,26)=9.925;p<.004;η2=.276,刺激反应相容性效应为72 ms。误差也不同,F(1,26)=23.199;p<0.001;η2=.472,在对应条件(13%)和非对应条件(23%)之间。该研究得出的结论是,在冲头运动感知开始时出现的空间代码显著影响了反应的执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Motor Control
Motor Control 医学-神经科学
CiteScore
1.80
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: Motor Control (MC), a peer-reviewed journal, provides a multidisciplinary examination of human movement across the lifespan. To keep you abreast of current developments in the field of motor control, it offers timely coverage of important topics, including issues related to motor disorders. This international journal publishes many types of research papers, from clinical experimental to modeling and theoretical studies. These papers come from such varied disciplines as biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. Motor Control, the official journal of the International Society of Motor Control, is designed to provide a multidisciplinary forum for the exchange of scientific information on the control of human movement across the lifespan, including issues related to motor disorders. Motor Control encourages submission of papers from a variety of disciplines including, but not limited to, biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. This peer-reviewed journal publishes a wide variety of types of research papers including clinical experimental, modeling, and theoretical studies. To be considered for publication, papers should clearly demonstrate a contribution to the understanding of control of movement. In addition to publishing research papers, Motor Control publishes review articles, quick communications, commentaries, target articles, and book reviews. When warranted, an entire issue may be devoted to a specific topic within the area of motor control.
期刊最新文献
Attentional Focus Strategies Can Improve Performance of Postural Control in Runners. Effect of a Perturbation-Based Balance Training Session on Adaptive Locomotor Response in Older Adults With a History of Falls. Postmovement Beta Rebound in Real and Imagined Movement. Vision Is Not Required to Elicit Balance Improvements From Beam Walking Practice. Effectiveness of Motor Imagery on Physical Function in Patients With Stroke: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1