Phospholipid Scrambling by G Protein-Coupled Receptors.

IF 10.4 1区 生物学 Q1 BIOPHYSICS Annual Review of Biophysics Pub Date : 2022-05-09 DOI:10.1146/annurev-biophys-090821-083030
George Khelashvili, Anant K Menon
{"title":"Phospholipid Scrambling by G Protein-Coupled Receptors.","authors":"George Khelashvili,&nbsp;Anant K Menon","doi":"10.1146/annurev-biophys-090821-083030","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid flip-flop of phospholipids across the two leaflets of biological membranes is crucial for many aspects of cellular life. The transport proteins that facilitate this process are classified as pump-like flippases and floppases and channel-like scramblases. Unexpectedly, Class A G protein-coupled receptors (GPCRs), a large class of signaling proteins exemplified by the visual receptor rhodopsin and its apoprotein opsin, are constitutively active as scramblases in vitro. In liposomes, opsin scrambles lipids at a unitary rate of >100,000 per second. Atomistic molecular dynamics simulations of opsin in a lipid membrane reveal conformational transitions that expose a polar groove between transmembrane helices 6 and 7. This groove enables transbilayer lipid movement, conceptualized as the swiping of a credit card (lipid) through a card reader (GPCR). Conformational changes that facilitate scrambling are distinct from those associated with GPCR signaling. In this review, we discuss the physiological significance of GPCR scramblase activity and the modes of its regulation in cells.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"51 ","pages":"39-61"},"PeriodicalIF":10.4000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521775/pdf/nihms-1837184.pdf","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-090821-083030","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 13

Abstract

Rapid flip-flop of phospholipids across the two leaflets of biological membranes is crucial for many aspects of cellular life. The transport proteins that facilitate this process are classified as pump-like flippases and floppases and channel-like scramblases. Unexpectedly, Class A G protein-coupled receptors (GPCRs), a large class of signaling proteins exemplified by the visual receptor rhodopsin and its apoprotein opsin, are constitutively active as scramblases in vitro. In liposomes, opsin scrambles lipids at a unitary rate of >100,000 per second. Atomistic molecular dynamics simulations of opsin in a lipid membrane reveal conformational transitions that expose a polar groove between transmembrane helices 6 and 7. This groove enables transbilayer lipid movement, conceptualized as the swiping of a credit card (lipid) through a card reader (GPCR). Conformational changes that facilitate scrambling are distinct from those associated with GPCR signaling. In this review, we discuss the physiological significance of GPCR scramblase activity and the modes of its regulation in cells.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
G蛋白偶联受体的磷脂混乱。
磷脂在生物膜的两个小叶上的快速翻转对细胞生命的许多方面都至关重要。促进这一过程的转运蛋白被分类为泵状翻转酶、翻转酶和通道状超燃酶。出乎意料的是,A类G蛋白偶联受体(gpcr),一类以视紫红质及其载脂蛋白视蛋白为例的信号蛋白,在体外作为超燃酶具有组成性活性。在脂质体中,视蛋白以每秒>100,000次的单一速率扰乱脂质。脂质膜中视蛋白的原子分子动力学模拟揭示了跨膜螺旋6和7之间的极性槽的构象转变。这个凹槽使跨双层脂质运动成为可能,就像通过读卡器(GPCR)刷信用卡(脂质)一样。促进混乱的构象变化不同于与GPCR信号相关的构象变化。本文就GPCR转录酶活性的生理意义及其在细胞中的调控模式作一综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
期刊最新文献
Mechanisms of Inheritance of Chromatin States: From Yeast to Human. Collapse and Protein Folding: Should We Be Surprised that Biothermodynamics Works So Well? Protein Modeling with DEER Spectroscopy. Biophysical Principles Emerging from Experiments on Protein-Protein Association and Aggregation. Ancestral Reconstruction and the Evolution of Protein Energy Landscapes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1