Effect of the pseudomonas metabolites HQNO on the Toxoplasma gondii RH strain in vitro and in vivo

Jiao Mo , Hongfei Si , Siyang Liu , Qingyuan Zeng , Minghao Cai , Zhendi Liu , Jiyu Zhang , Jingjing Fang , Jili Zhang
{"title":"Effect of the pseudomonas metabolites HQNO on the Toxoplasma gondii RH strain in vitro and in vivo","authors":"Jiao Mo ,&nbsp;Hongfei Si ,&nbsp;Siyang Liu ,&nbsp;Qingyuan Zeng ,&nbsp;Minghao Cai ,&nbsp;Zhendi Liu ,&nbsp;Jiyu Zhang ,&nbsp;Jingjing Fang ,&nbsp;Jili Zhang","doi":"10.1016/j.ijpddr.2023.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Toxoplasmosis is a widespread disease in humans and animals. Currently, toxoplasmosis chemotherapy options are limited due to severe side effects. There is an urgent need to develop new drugs with better efficacy and few side effects. HQNO, a cytochrome <em>bc</em>1 and type II NADH inhibitor in eukaryotes and bacteria, possesses extensive bioactivity. In this study, the cytotoxicity of HQNO was evaluated in Vero cells. The <em>in vitro</em> effects of HQNO were determined by plaque assay and qPCR assay. To determine the <em>in vivo</em> effect of HQNO, pharmacokinetic experiments and <em>in vivo</em> infection assays were performed in mice. The changes in tachyzoites after HQNO exposure were examined by transmission electron microscopy (TEM), MitoTracker Red CMXRos staining, ROS detection and ATP detection. HQNO inhibited <em>T. gondii</em> invasion and proliferation with an EC<sub>50</sub> of 0.995 μM. Pharmacokinetic experiments showed that the C<sub>max</sub> of HQNO (20 mg/kg·bw) was 3560 ± 1601 ng/mL (13.73 μM) in healthy BALB/c mouse plasma with no toxicity <em>in vivo</em>. Moreover, HQNO induced a significant decrease in the parasite burden load of <em>T. gondii</em> in mouse peritoneum. TEM revealed alterations in the mitochondria of <em>T. gondii</em>. Further assays verified that HQNO also decreased the mitochondrial membrane potential (ΔΨm) and ATP levels and enhanced the level of reactive oxygen species (ROS) in <em>T. gondii</em>. Hence, HQNO exerted <em>anti-T. gondii</em> activity, which may be related to the damage to the mitochondrial electron transport chain (ETC).</p></div>","PeriodicalId":13775,"journal":{"name":"International Journal for Parasitology: Drugs and Drug Resistance","volume":"21 ","pages":"Pages 74-80"},"PeriodicalIF":4.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/67/b8/main.PMC9929485.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology: Drugs and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211320723000052","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Toxoplasmosis is a widespread disease in humans and animals. Currently, toxoplasmosis chemotherapy options are limited due to severe side effects. There is an urgent need to develop new drugs with better efficacy and few side effects. HQNO, a cytochrome bc1 and type II NADH inhibitor in eukaryotes and bacteria, possesses extensive bioactivity. In this study, the cytotoxicity of HQNO was evaluated in Vero cells. The in vitro effects of HQNO were determined by plaque assay and qPCR assay. To determine the in vivo effect of HQNO, pharmacokinetic experiments and in vivo infection assays were performed in mice. The changes in tachyzoites after HQNO exposure were examined by transmission electron microscopy (TEM), MitoTracker Red CMXRos staining, ROS detection and ATP detection. HQNO inhibited T. gondii invasion and proliferation with an EC50 of 0.995 μM. Pharmacokinetic experiments showed that the Cmax of HQNO (20 mg/kg·bw) was 3560 ± 1601 ng/mL (13.73 μM) in healthy BALB/c mouse plasma with no toxicity in vivo. Moreover, HQNO induced a significant decrease in the parasite burden load of T. gondii in mouse peritoneum. TEM revealed alterations in the mitochondria of T. gondii. Further assays verified that HQNO also decreased the mitochondrial membrane potential (ΔΨm) and ATP levels and enhanced the level of reactive oxygen species (ROS) in T. gondii. Hence, HQNO exerted anti-T. gondii activity, which may be related to the damage to the mitochondrial electron transport chain (ETC).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
假单胞菌代谢产物HQNO对弓形虫RH株的体内外影响
弓形虫病是一种广泛存在于人类和动物中的疾病。目前,弓形虫病化疗方案由于严重的副作用而受到限制。迫切需要开发出疗效更好、副作用少的新药。HQNO是真核生物和细菌中的细胞色素bc1和II型NADH抑制剂,具有广泛的生物活性。在本研究中,HQNO在Vero细胞中的细胞毒性进行了评估。通过菌斑法和qPCR法测定HQNO的体外作用。为了确定HQNO的体内作用,在小鼠中进行了药代动力学实验和体内感染测定。通过透射电子显微镜(TEM)、MitoTracker Red CMXRos染色、ROS检测和ATP检测检测HQNO暴露后速殖子的变化。HQNO对弓形虫的侵袭和增殖具有抑制作用,EC50为0.995μM。药代动力学实验表明,HQNO(20mg/kg·bw)在健康BALB/c小鼠血浆中的Cmax为3560±1601ng/mL(13.73μM),在体内无毒性。此外,HQNO诱导小鼠腹膜中弓形虫的寄生虫负荷显著降低。透射电镜显示弓形虫线粒体发生改变。进一步的分析证实,HQNO还降低了弓形虫的线粒体膜电位(ΔΨm)和ATP水平,并提高了活性氧(ROS)的水平。因此HQNO可发挥抗T的作用。弓形虫活性,这可能与线粒体电子传递链(ETC)的损伤有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
7.50%
发文量
31
审稿时长
48 days
期刊介绍: The International Journal for Parasitology – Drugs and Drug Resistance is one of a series of specialist, open access journals launched by the International Journal for Parasitology. It publishes the results of original research in the area of anti-parasite drug identification, development and evaluation, and parasite drug resistance. The journal also covers research into natural products as anti-parasitic agents, and bioactive parasite products. Studies can be aimed at unicellular or multicellular parasites of human or veterinary importance.
期刊最新文献
Selective activity of Tabebuia avellanedae against Giardia duodenalis infecting organoid-derived human gastrointestinal epithelia. Combining the zebrafish embryo developmental toxicity assay (ZEDTA) with hemoglobin staining to accelerate the research of novel antimalarial drugs for pregnant women. Investigation of the threonine metabolism of Echinococcus multilocularis: The threonine dehydrogenase as a potential drug target in alveolar echinococcosis. 3'-deoxytubercidin: A potent therapeutic candidate for the treatment of Surra and Dourine. Biotransformation of anthelmintics in nematodes in relation to drug resistance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1