Perfusable cell-laden micropatterned hydrogels for delivery of spatiotemporal vascular-like cues to tissues

Walter B. Varhue , Aditya Rane , Ramon Castellanos-Sanchez , Shayn M. Peirce , George Christ , Nathan S. Swami
{"title":"Perfusable cell-laden micropatterned hydrogels for delivery of spatiotemporal vascular-like cues to tissues","authors":"Walter B. Varhue ,&nbsp;Aditya Rane ,&nbsp;Ramon Castellanos-Sanchez ,&nbsp;Shayn M. Peirce ,&nbsp;George Christ ,&nbsp;Nathan S. Swami","doi":"10.1016/j.ooc.2022.100017","DOIUrl":null,"url":null,"abstract":"<div><p>The integration of vasculature at physiological scales within 3D cultures of cell-laden hydrogels for the delivery of spatiotemporal mass transport, chemical and mechanical cues, is a stepping-stone towards building <em>in vitro</em> tissue models that recapitulate <em>in vivo</em> cues. To address this challenge, we present a versatile method to micropattern adjoining hydrogel shells with a perfusable channel or lumen core, for enabling facile integration with fluidic control systems, on one hand, and to cell-laden biomaterial interfaces, on the other hand. This microfluidic imprint lithography methodology utilizes the high tolerance and reversible nature of the bond alignment process to lithographically position multiple layers of imprints within a microfluidic device for sequential filling and patterning of hydrogel lumen structures with single or multiple shells. Through fluidic interfacing of the structures, the ability to deliver physiologically relevant mechanical cues for recapitulating cyclical stretch on the hydrogel shell and shear stress on endothelial cells in the lumen are validated. We envision application of this platform for recapitulation of the bio-functionality and topology of micro-vasculatures, alongside the ability to deliver transport and mechanical cues, as needed for 3D culture to construct <em>in vitro</em> tissue models.</p></div>","PeriodicalId":74371,"journal":{"name":"Organs-on-a-chip","volume":"4 ","pages":"Article 100017"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b7/75/nihms-1868292.PMC9977322.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organs-on-a-chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666102022000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of vasculature at physiological scales within 3D cultures of cell-laden hydrogels for the delivery of spatiotemporal mass transport, chemical and mechanical cues, is a stepping-stone towards building in vitro tissue models that recapitulate in vivo cues. To address this challenge, we present a versatile method to micropattern adjoining hydrogel shells with a perfusable channel or lumen core, for enabling facile integration with fluidic control systems, on one hand, and to cell-laden biomaterial interfaces, on the other hand. This microfluidic imprint lithography methodology utilizes the high tolerance and reversible nature of the bond alignment process to lithographically position multiple layers of imprints within a microfluidic device for sequential filling and patterning of hydrogel lumen structures with single or multiple shells. Through fluidic interfacing of the structures, the ability to deliver physiologically relevant mechanical cues for recapitulating cyclical stretch on the hydrogel shell and shear stress on endothelial cells in the lumen are validated. We envision application of this platform for recapitulation of the bio-functionality and topology of micro-vasculatures, alongside the ability to deliver transport and mechanical cues, as needed for 3D culture to construct in vitro tissue models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可灌注的载细胞微图案水凝胶,用于向组织传递时空血管样信号
在承载细胞的水凝胶三维培养物中整合生理尺度的脉管系统,以传递时空质量运输、化学和机械线索,是构建能够概括体内线索的体外组织模型的踏脚石。为了解决这一挑战,我们提出了一种通用的方法,用可渗透的通道或管腔核心来微图案相邻的水凝胶壳,一方面可以方便地与流体控制系统集成,另一方面可以方便地与细胞负载的生物材料界面集成。这种微流控压印光刻方法利用键对齐过程的高耐受性和可逆性,在微流控装置内平刻定位多层压印,用于单壳或多壳的水凝胶腔结构的顺序填充和图图化。通过结构的流体界面,能够提供生理学上相关的机械信号,以再现水凝胶外壳上的周期性拉伸和管腔内皮细胞上的剪切应力。我们设想将该平台应用于重现微血管的生物功能和拓扑结构,以及提供运输和机械线索的能力,这是3D培养构建体外组织模型所需要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Organs-on-a-chip
Organs-on-a-chip Analytical Chemistry, Biochemistry, Genetics and Molecular Biology (General), Cell Biology, Pharmacology, Toxicology and Pharmaceutics (General)
自引率
0.00%
发文量
0
审稿时长
125 days
期刊最新文献
Simple design for membrane-free microphysiological systems to model the blood-tissue barriers Microfluidics for brain endothelial cell-astrocyte interactions Advancements in organs-on-chips technology for viral disease and anti-viral research Generation of cynomolgus monkey airway, liver ductal, and kidney organoids with pharmacokinetic functions Blood–brain barrier microfluidic chips and their applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1