T V Andreeva, F E Gusev, N A Sinyakova, A V Kulikov, A P Grigorenko, I Yu Adrianova, D V Bazovkina, E I Rogaev
{"title":"An Analysis of Genetic Predisposition to Hereditary Catalepsy in a Mouse Model of Neuropsychiatric Disorders Using Whole-Genome Sequencing Data.","authors":"T V Andreeva, F E Gusev, N A Sinyakova, A V Kulikov, A P Grigorenko, I Yu Adrianova, D V Bazovkina, E I Rogaev","doi":"10.32607/actanaturae.11875","DOIUrl":null,"url":null,"abstract":"<p><p>Catalepsy is a behavioral condition that is associated with severe psychopathologies, including schizophrenia, depression, and Parkinson's disease. In some mouse strains, catalepsy can be induced by pinching the skin at the scruff of the neck. The main locus of hereditary catalepsy in mice has recently been linked to the 105-115 Mb fragment of mouse chromosome 13 by QTL analysis. We performed whole-genome sequencing of catalepsy-resistant and catalepsy-prone mouse strains in order to pinpoint the putative candidate genes related to hereditary catalepsy in mice. We remapped the previously described main locus for hereditary catalepsy in mice to the chromosome region 103.92-106.16 Mb. A homologous human region on chromosome 5 includes genetic and epigenetic variants associated with schizophrenia. Furthermore, we identified a missense variant in catalepsy-prone strains within the Nln gene. Nln encodes neurolysin, which degrades neurotensin, a peptide reported to induce catalepsy in mice. Our data suggest that Nln is the most probable candidate for the role of major gene of hereditary, pinch-induced catalepsy in mice and point to a shared molecular pathway between catalepsy in mice and human neuropsychiatric disorders.</p>","PeriodicalId":6989,"journal":{"name":"Acta Naturae","volume":"15 1","pages":"26-30"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Naturae","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32607/actanaturae.11875","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Catalepsy is a behavioral condition that is associated with severe psychopathologies, including schizophrenia, depression, and Parkinson's disease. In some mouse strains, catalepsy can be induced by pinching the skin at the scruff of the neck. The main locus of hereditary catalepsy in mice has recently been linked to the 105-115 Mb fragment of mouse chromosome 13 by QTL analysis. We performed whole-genome sequencing of catalepsy-resistant and catalepsy-prone mouse strains in order to pinpoint the putative candidate genes related to hereditary catalepsy in mice. We remapped the previously described main locus for hereditary catalepsy in mice to the chromosome region 103.92-106.16 Mb. A homologous human region on chromosome 5 includes genetic and epigenetic variants associated with schizophrenia. Furthermore, we identified a missense variant in catalepsy-prone strains within the Nln gene. Nln encodes neurolysin, which degrades neurotensin, a peptide reported to induce catalepsy in mice. Our data suggest that Nln is the most probable candidate for the role of major gene of hereditary, pinch-induced catalepsy in mice and point to a shared molecular pathway between catalepsy in mice and human neuropsychiatric disorders.
期刊介绍:
Acta Naturae is an international journal on life sciences based in Moscow, Russia.
Our goal is to present scientific work and discovery in molecular biology, biochemistry, biomedical disciplines and biotechnology. These fields represent the most important priorities for the research and engineering development both in Russia and worldwide. Acta Naturae is also a periodical for those who are curious in various aspects of biotechnological business, innovations in pharmaceutical areas, intellectual property protection and social consequences of scientific progress. The journal publishes analytical industrial surveys focused on the development of different spheres of modern life science and technology.
Being a radically new and totally unique journal in Russia, Acta Naturae is useful to both representatives of fundamental research and experts in applied sciences.