EOS-3D-DCNN: Ebola optimization search-based 3D-dense convolutional neural network for corn leaf disease prediction.

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computing & Applications Pub Date : 2023-01-01 DOI:10.1007/s00521-023-08289-3
C Ashwini, V Sellam
{"title":"EOS-3D-DCNN: Ebola optimization search-based 3D-dense convolutional neural network for corn leaf disease prediction.","authors":"C Ashwini,&nbsp;V Sellam","doi":"10.1007/s00521-023-08289-3","DOIUrl":null,"url":null,"abstract":"<p><p>Corn disease prediction is an essential part of agricultural productivity. This paper presents a novel 3D-dense convolutional neural network (3D-DCNN) optimized using the Ebola optimization search (EOS) algorithm to predict corn disease targeting the increased prediction accuracy than the conventional AI methods. Since the dataset samples are generally insufficient, the paper uses some preliminary pre-processing approaches to increase the sample set and improve the samples for corn disease. The Ebola optimization search (EOS) technique is used to reduce the classification errors of the 3D-CNN approach. As an outcome, the corn disease is predicted and classified accurately and more effectually. The accuracy of the proposed 3D-DCNN-EOS model is improved, and some necessary baseline tests are performed to project the efficacy of the anticipated model. The simulation is performed in the MATLAB 2020a environment, and the outcomes specify the significance of the proposed model over other approaches. The feature representation of the input data is learned effectually to trigger the model's performance. When the proposed method is compared to other existing techniques, it outperforms them in terms of precision, the area under receiver operating characteristics (AUC), f1 score, Kappa statistic error (KSE), accuracy, root mean square error value (RMSE), and recall.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 15","pages":"11125-11139"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043543/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-023-08289-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5

Abstract

Corn disease prediction is an essential part of agricultural productivity. This paper presents a novel 3D-dense convolutional neural network (3D-DCNN) optimized using the Ebola optimization search (EOS) algorithm to predict corn disease targeting the increased prediction accuracy than the conventional AI methods. Since the dataset samples are generally insufficient, the paper uses some preliminary pre-processing approaches to increase the sample set and improve the samples for corn disease. The Ebola optimization search (EOS) technique is used to reduce the classification errors of the 3D-CNN approach. As an outcome, the corn disease is predicted and classified accurately and more effectually. The accuracy of the proposed 3D-DCNN-EOS model is improved, and some necessary baseline tests are performed to project the efficacy of the anticipated model. The simulation is performed in the MATLAB 2020a environment, and the outcomes specify the significance of the proposed model over other approaches. The feature representation of the input data is learned effectually to trigger the model's performance. When the proposed method is compared to other existing techniques, it outperforms them in terms of precision, the area under receiver operating characteristics (AUC), f1 score, Kappa statistic error (KSE), accuracy, root mean square error value (RMSE), and recall.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EOS-3D-DCNN:基于埃博拉优化搜索的三维密集卷积神经网络玉米叶病预测
玉米病害预测是农业生产的重要组成部分。本文提出了一种利用埃博拉优化搜索(EOS)算法优化的三维密集卷积神经网络(3D-DCNN)预测玉米病害的方法,其预测精度比传统的人工智能方法有所提高。由于数据集样本普遍不足,本文采用了一些初步的预处理方法来增加样本集,改进玉米病害的样本。采用埃博拉优化搜索(EOS)技术降低3D-CNN方法的分类误差。对玉米病害进行了准确、有效的预测和分类。提出的3D-DCNN-EOS模型的精度得到了提高,并进行了一些必要的基线测试来预测预期模型的有效性。在MATLAB 2020a环境中进行了仿真,结果表明了所提出模型相对于其他方法的重要性。有效地学习输入数据的特征表示来触发模型的性能。与现有方法相比,该方法在精度、接收者工作特征下面积(AUC)、f1分数、Kappa统计误差(KSE)、准确率、均方根误差值(RMSE)和召回率等方面均优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
期刊最新文献
Stress monitoring using wearable sensors: IoT techniques in medical field. A new hybrid model of convolutional neural networks and hidden Markov chains for image classification. Analysing sentiment change detection of Covid-19 tweets. Normal vibration distribution search-based differential evolution algorithm for multimodal biomedical image registration. Special issue on deep learning and big data analytics for medical e-diagnosis/AI-based e-diagnosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1