{"title":"Efficient production of mannosylerythritol lipids by a marine yeast <i>Moesziomyces aphidis</i> XM01 and their application as self-assembly nanomicelles.","authors":"Guanshuo Yu, Xiaoxiang Wang, Chao Zhang, Zhe Chi, Zhenming Chi, Guanglei Liu","doi":"10.1007/s42995-022-00135-0","DOIUrl":null,"url":null,"abstract":"<p><p>Mannosylerythritol lipids (MELs) are one of the most promising biosurfactants because of their excellent physicochemical properties, high environmental compatibility, and various biological functions. In this study, a mangrove yeast strain <i>Moesziomyces aphidis</i> XM01 was identified and used for efficient extracellular MEL production. The MEL titer reached 64.5 ± 0.7 g/L at flask level within 7 days with the optimized nitrogen and carbon source of 2.0 g/L NaNO<sub>3</sub> and 70 g/L soybean oil. Furthermore, during a 10-L two-stage fed-batch fermentation, the final MEL titer reached 113.6 ± 3.1 g/L within 8 days, with prominent productivity and yield of 14.2 g·L<sup>-1</sup>·day<sup>-1</sup> and 94.6 g/g<sub>(glucose and soybean oil)</sub>. Structural analysis indicated that the produced MELs were mainly MEL-A and its fatty acid profile was composed of only medium-chain fatty acids (C8-C12), especially C10 acids (77.81%). Further applications of this compound were evaluated as one-step self-assembly nanomicelles. The obtained MEL nanomicelles showed good physicochemical stability and antibacterial activity. In addition, using clarithromycin as a model hydrophobic drug, the MEL nanomicelles exhibited high loading capacity and could be used for the controlled and sustained drug release in low-pH environments. Therefore, <i>M. aphidis</i> XM01 is an excellent candidate for efficient MEL production, and the prepared MEL nanomicelles have broad application prospects in the pharmaceutical and cosmetic fields.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-022-00135-0.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"4 3","pages":"373-383"},"PeriodicalIF":5.8000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077156/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-022-00135-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Mannosylerythritol lipids (MELs) are one of the most promising biosurfactants because of their excellent physicochemical properties, high environmental compatibility, and various biological functions. In this study, a mangrove yeast strain Moesziomyces aphidis XM01 was identified and used for efficient extracellular MEL production. The MEL titer reached 64.5 ± 0.7 g/L at flask level within 7 days with the optimized nitrogen and carbon source of 2.0 g/L NaNO3 and 70 g/L soybean oil. Furthermore, during a 10-L two-stage fed-batch fermentation, the final MEL titer reached 113.6 ± 3.1 g/L within 8 days, with prominent productivity and yield of 14.2 g·L-1·day-1 and 94.6 g/g(glucose and soybean oil). Structural analysis indicated that the produced MELs were mainly MEL-A and its fatty acid profile was composed of only medium-chain fatty acids (C8-C12), especially C10 acids (77.81%). Further applications of this compound were evaluated as one-step self-assembly nanomicelles. The obtained MEL nanomicelles showed good physicochemical stability and antibacterial activity. In addition, using clarithromycin as a model hydrophobic drug, the MEL nanomicelles exhibited high loading capacity and could be used for the controlled and sustained drug release in low-pH environments. Therefore, M. aphidis XM01 is an excellent candidate for efficient MEL production, and the prepared MEL nanomicelles have broad application prospects in the pharmaceutical and cosmetic fields.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-022-00135-0.
期刊介绍:
Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats.
The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.