{"title":"What neuropathology teaches us about autoimmune encephalitides, autoimmune epilepsies, and encephalomyelitides.","authors":"Christian G Bien, Jan Bauer","doi":"10.5414/NP301536","DOIUrl":null,"url":null,"abstract":"<p><p>Delineation of the autoimmune encephalitides with antibodies against neural surface antigens (anti-<i>N</i>-Methyl-D-aspartate, anti-leucine-rich glioma-inactivated protein 1, and others), autoimmune-associated epilepsies (Rasmussen encephalitis, paraneoplastic encephalitides, temporal lobe epilepsy with antibodies against glutamic acid decarboxylase), and encephalomyelitides with glial antibodies (neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody disease) has been a major advance in neurology. But how do these inflammatory diseases \"work\"? What kind of interaction between elements of the immune system and brain cells leads to these conditions? The only direct way of answering these questions is to investigate affected brain tissue by neuropathological techniques. They provide morphological and, in part, temporal information on the elements and localization of the disease process. Molecular techniques broaden and support these data. Brain tissue becomes available through autopsies and brain biopsies, obtained for diagnostic or therapeutic interventions. The limitations of neuropathological pathogenic research are discussed. Finally, representative neuropathological findings in autoimmune encephalitides and related conditions are summarized.</p>","PeriodicalId":55251,"journal":{"name":"Clinical Neuropathology","volume":"42 3","pages":"87-92"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neuropathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5414/NP301536","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Delineation of the autoimmune encephalitides with antibodies against neural surface antigens (anti-N-Methyl-D-aspartate, anti-leucine-rich glioma-inactivated protein 1, and others), autoimmune-associated epilepsies (Rasmussen encephalitis, paraneoplastic encephalitides, temporal lobe epilepsy with antibodies against glutamic acid decarboxylase), and encephalomyelitides with glial antibodies (neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody disease) has been a major advance in neurology. But how do these inflammatory diseases "work"? What kind of interaction between elements of the immune system and brain cells leads to these conditions? The only direct way of answering these questions is to investigate affected brain tissue by neuropathological techniques. They provide morphological and, in part, temporal information on the elements and localization of the disease process. Molecular techniques broaden and support these data. Brain tissue becomes available through autopsies and brain biopsies, obtained for diagnostic or therapeutic interventions. The limitations of neuropathological pathogenic research are discussed. Finally, representative neuropathological findings in autoimmune encephalitides and related conditions are summarized.
期刊介绍:
Clinical Neuropathology appears bi-monthly and publishes reviews and editorials, original papers, short communications and reports on recent advances in the entire field of clinical neuropathology. Papers on experimental neuropathologic subjects are accepted if they bear a close relationship to human diseases. Correspondence (letters to the editors) and current information including book announcements will also be published.