The New Sub-regression Type Estimator in Ranked Set Sampling.

IF 0.6 Q4 STATISTICS & PROBABILITY Journal of Statistical Theory and Practice Pub Date : 2023-01-01 DOI:10.1007/s42519-023-00324-9
Eda Gizem Koçyiğit, Khalid Ul Islam Rather
{"title":"The New Sub-regression Type Estimator in Ranked Set Sampling.","authors":"Eda Gizem Koçyiğit,&nbsp;Khalid Ul Islam Rather","doi":"10.1007/s42519-023-00324-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a new sub-regression type estimator for ranked set sampling (RSS) is proposed based on the idea of a sub-ratio estimator given in Koçyiğit and Kadılar (Commun Stat Theory Methods 1-23, 2022). The proposed unbiased estimator's mean square error is obtained and compared theoretically with other estimators. The theoretical results have been supported by the different simulations and real-life data sets studies and have shown that the proposed estimator is more effective than the estimators in the literature. It is also seen that the number of repetitions in the RSS affected the effectiveness of the sub-estimators.</p>","PeriodicalId":45853,"journal":{"name":"Journal of Statistical Theory and Practice","volume":"17 2","pages":"27"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974047/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42519-023-00324-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, a new sub-regression type estimator for ranked set sampling (RSS) is proposed based on the idea of a sub-ratio estimator given in Koçyiğit and Kadılar (Commun Stat Theory Methods 1-23, 2022). The proposed unbiased estimator's mean square error is obtained and compared theoretically with other estimators. The theoretical results have been supported by the different simulations and real-life data sets studies and have shown that the proposed estimator is more effective than the estimators in the literature. It is also seen that the number of repetitions in the RSS affected the effectiveness of the sub-estimators.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
排序集抽样中新的子回归类型估计。
在本研究中,基于Koçyiğit和Kadılar (common Stat Theory Methods 1- 23,2022)中给出的子比率估计器的思想,提出了一种新的排序集抽样(RSS)的子回归型估计器。得到了无偏估计量的均方误差,并与其他估计量进行了理论比较。理论结果得到了不同模拟和实际数据集研究的支持,并表明所提出的估计器比文献中的估计器更有效。还可以看出,RSS中的重复次数影响了子估计器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Theory and Practice
Journal of Statistical Theory and Practice STATISTICS & PROBABILITY-
CiteScore
1.40
自引率
0.00%
发文量
74
期刊最新文献
Applications of Deep Neural Networks with Fractal Structure and Attention Blocks for 2D and 3D Brain Tumor Segmentation. Canonical Dependency Analysis Using a Bias-Corrected $$\chi ^2$$ Statistics Matrix Simultaneous Tests for Mean Vectors and Covariance Matrices with Three-Step Monotone Missing Data A Time-Lagged Penalized Regression Model and Applications to Economic Modeling Doubly-Inflated Poisson INGARCH Models for Count Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1