Tissue-specific transcriptome profiling of Drosophila reveals roles for GATA transcription factors in longevity by dietary restriction.

IF 5.4 Q1 GERIATRICS & GERONTOLOGY NPJ Aging and Mechanisms of Disease Pub Date : 2018-01-01 DOI:10.1038/s41514-018-0024-4
Adam J Dobson, Xiaoli He, Eric Blanc, Ekin Bolukbasi, Yodit Feseha, Mingyao Yang, Matthew D W Piper
{"title":"Tissue-specific transcriptome profiling of <i>Drosophila</i> reveals roles for GATA transcription factors in longevity by dietary restriction.","authors":"Adam J Dobson,&nbsp;Xiaoli He,&nbsp;Eric Blanc,&nbsp;Ekin Bolukbasi,&nbsp;Yodit Feseha,&nbsp;Mingyao Yang,&nbsp;Matthew D W Piper","doi":"10.1038/s41514-018-0024-4","DOIUrl":null,"url":null,"abstract":"<p><p>Dietary restriction (DR) extends animal lifespan, but imposes fitness costs. This phenomenon depends on dietary essential amino acids (EAAs) and TOR signalling, which exert systemic effects. However, the roles of specific tissues and cell-autonomous transcriptional regulators in diverse aspects of the DR phenotype are unknown. Manipulating relevant transcription factors (TFs) specifically in lifespan-limiting tissues may separate the lifespan benefits of DR from the early-life fitness costs. Here, we systematically analyse transcription across organs of <i>Drosophila</i> subjected to DR or low TOR and predict regulatory TFs. We predict and validate roles for the evolutionarily conserved GATA family of TFs, and identify conservation of this signal in mice. Importantly, restricting knockdown of the GATA TF <i>srp</i> to specific fly tissues recapitulated the benefits but not the costs of DR. Together, our data indicate that the GATA TFs mediate effects of dietary amino acids on lifespan, and that by manipulating them in specific tissues it is possible to reap the fitness benefits of EAAs, decoupled from a cost to longevity.</p>","PeriodicalId":19334,"journal":{"name":"NPJ Aging and Mechanisms of Disease","volume":"4 ","pages":"5"},"PeriodicalIF":5.4000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41514-018-0024-4","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Aging and Mechanisms of Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-018-0024-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 29

Abstract

Dietary restriction (DR) extends animal lifespan, but imposes fitness costs. This phenomenon depends on dietary essential amino acids (EAAs) and TOR signalling, which exert systemic effects. However, the roles of specific tissues and cell-autonomous transcriptional regulators in diverse aspects of the DR phenotype are unknown. Manipulating relevant transcription factors (TFs) specifically in lifespan-limiting tissues may separate the lifespan benefits of DR from the early-life fitness costs. Here, we systematically analyse transcription across organs of Drosophila subjected to DR or low TOR and predict regulatory TFs. We predict and validate roles for the evolutionarily conserved GATA family of TFs, and identify conservation of this signal in mice. Importantly, restricting knockdown of the GATA TF srp to specific fly tissues recapitulated the benefits but not the costs of DR. Together, our data indicate that the GATA TFs mediate effects of dietary amino acids on lifespan, and that by manipulating them in specific tissues it is possible to reap the fitness benefits of EAAs, decoupled from a cost to longevity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
果蝇的组织特异性转录组分析揭示了GATA转录因子在饮食限制长寿中的作用。
饮食限制(DR)延长了动物的寿命,但增加了健康成本。这种现象取决于膳食必需氨基酸(EAAs)和TOR信号,它们发挥全身作用。然而,特定组织和细胞自主转录调节因子在DR表型的各个方面的作用尚不清楚。在寿命限制组织中操纵相关转录因子(TFs)可能会将DR的寿命益处与早期健康成本分开。在这里,我们系统地分析了受DR或低TOR影响的果蝇各器官的转录,并预测了调节性tf。我们预测并验证了进化保守的TFs GATA家族的作用,并确定了该信号在小鼠中的保守性。重要的是,将GATA TF srp的敲低限制在特定的果蝇组织中,再现了dr的好处,而不是代价。总之,我们的数据表明,GATA TF介导膳食氨基酸对寿命的影响,通过在特定组织中操纵它们,有可能获得eaa的健康益处,与寿命成本分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NPJ Aging and Mechanisms of Disease
NPJ Aging and Mechanisms of Disease Medicine-Geriatrics and Gerontology
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊介绍: npj Aging and Mechanisms of Disease is an online open access journal that provides a forum for the world’s most important research in the fields of aging and aging-related disease. The journal publishes papers from all relevant disciplines, encouraging those that shed light on the mechanisms behind aging and the associated diseases. The journal’s scope includes, but is not restricted to, the following areas (not listed in order of preference): • cellular and molecular mechanisms of aging and aging-related diseases • interventions to affect the process of aging and longevity • homeostatic regulation and aging • age-associated complications • translational research into prevention and treatment of aging-related diseases • mechanistic bases for epidemiological aspects of aging-related disease.
期刊最新文献
EPB41L4A-AS1 is required to maintain basal autophagy to modulates Aβ clearance Dynamics of Wnt/β-catenin reporter activity throughout whole life in a naturally short-lived vertebrate Healthcare on the brink: navigating the challenges of an aging society in the United States Oxidative damage in the gastrocnemius predicts long-term survival in patients with peripheral artery disease The use of a systems approach to increase NAD+ in human participants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1