Metoclopramide as a Potential Antipsychotic Against Long-Term Methionine Exposure in Zebrafish.

IF 1.4 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY Zebrafish Pub Date : 2023-02-01 DOI:10.1089/zeb.2022.0033
Hemen Ved, Gaurav Doshi, Nirav Bhatia, Pravin Kale
{"title":"Metoclopramide as a Potential Antipsychotic Against Long-Term Methionine Exposure in Zebrafish.","authors":"Hemen Ved,&nbsp;Gaurav Doshi,&nbsp;Nirav Bhatia,&nbsp;Pravin Kale","doi":"10.1089/zeb.2022.0033","DOIUrl":null,"url":null,"abstract":"<p><p>Methionine (MET) contributes to brain function and is required for proper functioning of the central nervous system. However, exceptionally high levels of MET and its metabolites in plasma have been found to be toxic and can lead to cell alterations. Long-term exposure to MET has been shown to mimic psychotic symptoms in schizophrenic patients and rodents. The present study evaluated behavioral and neurochemical effects of long-term exposure to MET in zebrafish. Five groups of zebrafish were exposed to MET at a concentration of 4.5 mM for 7 days, along with acute exposure to 25 μM of clozapine and 750, 1000, and 1250 μM of metoclopramide. In contrast, the normal group was exposed to only water and dimethyl sulfoxide. After the treatment, social interaction, anxiety, memory, and locomotion of zebrafish and serotonin levels in zebrafish brains were evaluated. Our results showed that metoclopramide was not only beneficial in improving MET-induced cognitive impairment but it also prevented social withdrawal in zebrafish exposed to MET. In addition, metoclopramide reversed anxiety-like behavior, as indicated by significant changes in locomotion activity. Despite slight changes in serotonin levels in the zebrafish brain, an <i>in vitro</i> serotonin assay failed to demonstrate significant differences between the disease control, normal, and two treatment groups. Finally, results from the study showed that repeated administration of MET induced schizophrenia-like symptoms, although metoclopramide ameliorated the MET-mediated negative symptoms and cognitive deficits in zebrafish. Overall, our findings suggest a new perspective to further explore the antipsychotic properties of metoclopramide.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2022.0033","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Methionine (MET) contributes to brain function and is required for proper functioning of the central nervous system. However, exceptionally high levels of MET and its metabolites in plasma have been found to be toxic and can lead to cell alterations. Long-term exposure to MET has been shown to mimic psychotic symptoms in schizophrenic patients and rodents. The present study evaluated behavioral and neurochemical effects of long-term exposure to MET in zebrafish. Five groups of zebrafish were exposed to MET at a concentration of 4.5 mM for 7 days, along with acute exposure to 25 μM of clozapine and 750, 1000, and 1250 μM of metoclopramide. In contrast, the normal group was exposed to only water and dimethyl sulfoxide. After the treatment, social interaction, anxiety, memory, and locomotion of zebrafish and serotonin levels in zebrafish brains were evaluated. Our results showed that metoclopramide was not only beneficial in improving MET-induced cognitive impairment but it also prevented social withdrawal in zebrafish exposed to MET. In addition, metoclopramide reversed anxiety-like behavior, as indicated by significant changes in locomotion activity. Despite slight changes in serotonin levels in the zebrafish brain, an in vitro serotonin assay failed to demonstrate significant differences between the disease control, normal, and two treatment groups. Finally, results from the study showed that repeated administration of MET induced schizophrenia-like symptoms, although metoclopramide ameliorated the MET-mediated negative symptoms and cognitive deficits in zebrafish. Overall, our findings suggest a new perspective to further explore the antipsychotic properties of metoclopramide.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲氧氯普胺对斑马鱼长期蛋氨酸暴露的潜在抗精神病药物作用。
蛋氨酸(MET)有助于大脑功能,是中枢神经系统正常运作所必需的。然而,血浆中异常高水平的MET及其代谢物已被发现是有毒的,并可能导致细胞改变。长期暴露于MET已被证明可以模仿精神分裂症患者和啮齿动物的精神病症状。本研究评估了斑马鱼长期暴露于MET对行为和神经化学的影响。5组斑马鱼连续7天暴露于浓度为4.5 mM的MET,同时急性暴露于25 μM的氯氮平和750、1000和1250 μM的甲氧氯普胺。相比之下,正常组只暴露于水和二甲亚砜。治疗后,评估斑马鱼的社会互动、焦虑、记忆和运动以及斑马鱼大脑中的血清素水平。我们的研究结果表明,甲氧氯普胺不仅有利于改善MET诱导的认知障碍,而且还可以防止暴露于MET的斑马鱼的社交退缩。此外,甲氧氯普胺逆转焦虑样行为,运动活动的显著变化表明。尽管斑马鱼大脑中的血清素水平略有变化,但体外血清素测定未能证明疾病控制组、正常组和两个治疗组之间存在显著差异。最后,研究结果表明,尽管甲氧氯普胺改善了斑马鱼中MET介导的阴性症状和认知缺陷,但反复给予MET诱导精神分裂症样症状。总之,我们的发现为进一步探索甲氧氯普胺的抗精神病特性提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Zebrafish
Zebrafish DEVELOPMENTAL BIOLOGY-ZOOLOGY
CiteScore
3.60
自引率
5.00%
发文量
29
审稿时长
3 months
期刊介绍: Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease. Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage. Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community. TechnoFish features two types of articles: TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community Zebrafish coverage includes: Comparative genomics and evolution Molecular/cellular mechanisms of cell growth Genetic analysis of embryogenesis and disease Toxicological and infectious disease models Models for neurological disorders and aging New methods, tools, and experimental approaches Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.
期刊最新文献
Fish in a Dish: Using Zebrafish in Authentic Science Research Experiences for Under-represented High School Students from West Virginia. Novel Development of Magnetic Resonance Imaging to Quantify the Structural Anatomic Growth of Diverse Organs in Adult and Mutant Zebrafish. Zebrafish (Danio rerio) Gynogenetic Production by Heat Shock: Comparison Between Mitotic and Meiotic Treatment. Curcumin-Encapsulated Nanomicelles Promote Tissue Regeneration in Zebrafish Eleutheroembryo. Incorporating Primer Amplification Efficiencies in Quantitative Reverse Transcription Polymerase Chain Reaction Experiments; Considerations for Differential Gene Expression Analyses in Zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1