Focus on centrin in normal and altered human spermatozoa.

IF 2.1 4区 医学 Q3 ANDROLOGY Systems Biology in Reproductive Medicine Pub Date : 2023-06-01 DOI:10.1080/19396368.2023.2181115
Elena Moretti, Daria Noto, Roberta Corsaro, Giulia Collodel
{"title":"Focus on centrin in normal and altered human spermatozoa.","authors":"Elena Moretti,&nbsp;Daria Noto,&nbsp;Roberta Corsaro,&nbsp;Giulia Collodel","doi":"10.1080/19396368.2023.2181115","DOIUrl":null,"url":null,"abstract":"<p><p>This review provides details on the role of centrin in human spermatozoa and in various forms of male infertility. Centrin is a calcium (Ca<sup>2+</sup>)-binding phosphoprotein that is located in the centrioles - which are typical structures of the sperm connecting piece and play a key role in centrosome dynamics during sperm morphogenesis - as well as in zygotes and early embryos during spindle assembly. In humans, three different centrin genes encoding three isoforms have been discovered. Centrin 1, the only one expressed in spermatozoa, seems to be lost inside the oocyte after fertilization. The sperm connecting piece is characterized by the presence of numerous proteins including centrin, that deserves particular attention because, in humans, it is enriched during maturation of the centrioles. In normal sperm, centrin 1 is visible as two distinct spots in the head-tail junction; however, in some defective spermatozoa, centrin 1 distribution is altered. Centrin has been studied in humans and animal models. Its mutations may lead to several structural alterations, such as serious defects in the connective piece and, subsequently, fertilization failure or incomplete embryonic development. However, the effects of these abnormalities on male fertility have not been fully studied. Because the presence and the function of centrin in the sperm connecting piece appears important for reproductive success, additional studies are needed to bring medical benefits in resolving some cases of idiopathic infertility.</p>","PeriodicalId":22184,"journal":{"name":"Systems Biology in Reproductive Medicine","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Biology in Reproductive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19396368.2023.2181115","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This review provides details on the role of centrin in human spermatozoa and in various forms of male infertility. Centrin is a calcium (Ca2+)-binding phosphoprotein that is located in the centrioles - which are typical structures of the sperm connecting piece and play a key role in centrosome dynamics during sperm morphogenesis - as well as in zygotes and early embryos during spindle assembly. In humans, three different centrin genes encoding three isoforms have been discovered. Centrin 1, the only one expressed in spermatozoa, seems to be lost inside the oocyte after fertilization. The sperm connecting piece is characterized by the presence of numerous proteins including centrin, that deserves particular attention because, in humans, it is enriched during maturation of the centrioles. In normal sperm, centrin 1 is visible as two distinct spots in the head-tail junction; however, in some defective spermatozoa, centrin 1 distribution is altered. Centrin has been studied in humans and animal models. Its mutations may lead to several structural alterations, such as serious defects in the connective piece and, subsequently, fertilization failure or incomplete embryonic development. However, the effects of these abnormalities on male fertility have not been fully studied. Because the presence and the function of centrin in the sperm connecting piece appears important for reproductive success, additional studies are needed to bring medical benefits in resolving some cases of idiopathic infertility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚焦于正常和改变的人类精子中的中心蛋白。
这篇综述详细介绍了中心蛋白在人类精子和各种形式的男性不育中的作用。中心蛋白是一种钙(Ca2+)结合磷蛋白,位于中心粒中,中心粒是精子连接片的典型结构,在精子形态发生过程中对中心体动力学起关键作用,在纺锤体组装过程中也在合子和早期胚胎中起关键作用。在人类中,已经发现了三种不同的中心蛋白基因编码三种同种异构体。精子中唯一表达的中心蛋白1似乎在受精后在卵母细胞中丢失。精子连接片段的特点是存在许多蛋白质,包括中心蛋白,这值得特别注意,因为在人类中,它在中心粒成熟过程中富集。在正常精子中,中心体1在头尾交界处可见两个不同的点;然而,在一些有缺陷的精子中,中心点1的分布发生了改变。Centrin已在人类和动物模型中进行了研究。它的突变可能导致一些结构改变,如结缔组织的严重缺陷,随后导致受精失败或胚胎发育不完全。然而,这些异常对男性生育能力的影响尚未得到充分研究。由于中心素在精子连接片中的存在和功能对生殖成功似乎很重要,因此需要进一步的研究来解决一些特发性不孕症的医学益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
4.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Systems Biology in Reproductive Medicine, SBiRM, publishes Research Articles, Communications, Applications Notes that include protocols a Clinical Corner that includes case reports, Review Articles and Hypotheses and Letters to the Editor on human and animal reproduction. The journal will highlight the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatic, molecular, and biochemical, to address fundamental questions in reproductive biology, reproductive medicine, and translational research. The journal publishes research involving human and animal gametes, stem cells, developmental biology and toxicology, and clinical care in reproductive medicine. Specific areas of interest to the journal include: male factor infertility and germ cell biology, reproductive technologies (gamete micro-manipulation and cryopreservation, in vitro fertilization/embryo transfer (IVF/ET) and contraception. Research that is directed towards developing new or enhanced technologies for clinical medicine or scientific research in reproduction is of significant interest to the journal.
期刊最新文献
E-SBiRM. Engineered exosome as a biological nanoplatform for drug delivery of Rosmarinic acid to improve implantation in mice with induced endometritis. Hydroxycitric acid and capsaicin combination alleviates obesity-induced testicular apoptosis, oxidative stress and inflammation. Preimplantation genetic testing as a preventive strategy for the transmission of mitochondrial DNA disorders. Effects of first and second division modes on euploidy acquisition in human embryo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1