Ece Ucar Başol, Pekka Kalevi Vallittu, Lippo Veli Juhana Lassila, Isil Cekic Nagas
{"title":"Effect of bioactive glass particles on mechanical and adhesion properties of resin cements.","authors":"Ece Ucar Başol, Pekka Kalevi Vallittu, Lippo Veli Juhana Lassila, Isil Cekic Nagas","doi":"10.2186/jpr.JPR_D_22_00314","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The aim of this study is to evaluate the mechanical and adhesive properties of three different resin cements with bioactive glass (BAG) incorporated in two different ratios.</p><p><strong>Methods: </strong>BAG was added to different resin cements (3M Rely-X Ultimate, GC Link Ace, and GC Link Force) in different ratios (5% and 10% by weight). The three-point flexural strength, microhardness, and bond strength properties were evaluated. The fracture types of the groups were then analyzed using a stereo microscope. The data were analyzed using a multifactorial analysis of variance and Tukey's post-hoc tests (α < 0.05).</p><p><strong>Results: </strong>The addition of BAG reduced the flexural strength of the resin cements (P < 0.05).The effect of BAG addition on the Vickers microhardness value was significantly different for each cement group (P < 0.05). In addition, with the exception of the GC link force group (10% BAG addition), the BAG addition decreased the bond strength of cements to dentin in all the groups (P = 0.171).</p><p><strong>Conclusions: </strong>The results of this study confirmed that different resin cements comprising different ratios of BAG exhibited different flexural strength, hardness, and bond-strength properties. Since the bond strength values increased with the addition of 10% BAG in the GC Link Force cement group, the effects of different BAG compositions could be worth investigating in future studies.</p>","PeriodicalId":16887,"journal":{"name":"Journal of prosthodontic research","volume":" ","pages":"105-113"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of prosthodontic research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2186/jpr.JPR_D_22_00314","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The aim of this study is to evaluate the mechanical and adhesive properties of three different resin cements with bioactive glass (BAG) incorporated in two different ratios.
Methods: BAG was added to different resin cements (3M Rely-X Ultimate, GC Link Ace, and GC Link Force) in different ratios (5% and 10% by weight). The three-point flexural strength, microhardness, and bond strength properties were evaluated. The fracture types of the groups were then analyzed using a stereo microscope. The data were analyzed using a multifactorial analysis of variance and Tukey's post-hoc tests (α < 0.05).
Results: The addition of BAG reduced the flexural strength of the resin cements (P < 0.05).The effect of BAG addition on the Vickers microhardness value was significantly different for each cement group (P < 0.05). In addition, with the exception of the GC link force group (10% BAG addition), the BAG addition decreased the bond strength of cements to dentin in all the groups (P = 0.171).
Conclusions: The results of this study confirmed that different resin cements comprising different ratios of BAG exhibited different flexural strength, hardness, and bond-strength properties. Since the bond strength values increased with the addition of 10% BAG in the GC Link Force cement group, the effects of different BAG compositions could be worth investigating in future studies.
目的:本研究旨在评估以两种不同比例添加生物活性玻璃(BAG)的三种不同树脂水门汀的机械和粘接性能:在不同的树脂水门汀(3M Rely-X Ultimate、GC Link Ace 和 GC Link Force)中以不同的比例(5% 和 10%(重量比))添加 BAG。对三点弯曲强度、显微硬度和粘接强度性能进行了评估。然后使用立体显微镜分析了各组的断裂类型。数据分析采用多因素方差分析和 Tukey 后检验(α < 0.05):添加 BAG 会降低树脂水门汀的抗折强度(P < 0.05)。添加 BAG 对各组水门汀维氏硬度值的影响存在显著差异(P < 0.05)。此外,除 GC 连接力组(BAG 添加量为 10%)外,BAG 添加量降低了所有组别水门汀与牙本质的粘结强度(P = 0.171):本研究结果证实,不同比例的 BAG 树脂水门汀具有不同的抗弯强度、硬度和粘结强度特性。由于在 GC Link Force 水泥组中添加 10% 的 BAG 后粘接强度值会增加,因此不同 BAG 成分的影响值得在今后的研究中进行探讨。
期刊介绍:
Journal of Prosthodontic Research is published 4 times annually, in January, April, July, and October, under supervision by the Editorial Board of Japan Prosthodontic Society, which selects all materials submitted for publication.
Journal of Prosthodontic Research originated as an official journal of Japan Prosthodontic Society. It has recently developed a long-range plan to become the most prestigious Asian journal of dental research regarding all aspects of oral and occlusal rehabilitation, fixed/removable prosthodontics, oral implantology and applied oral biology and physiology. The Journal will cover all diagnostic and clinical management aspects necessary to reestablish subjective and objective harmonious oral aesthetics and function.
The most-targeted topics:
1) Clinical Epidemiology and Prosthodontics
2) Fixed/Removable Prosthodontics
3) Oral Implantology
4) Prosthodontics-Related Biosciences (Regenerative Medicine, Bone Biology, Mechanobiology, Microbiology/Immunology)
5) Oral Physiology and Biomechanics (Masticating and Swallowing Function, Parafunction, e.g., bruxism)
6) Orofacial Pain and Temporomandibular Disorders (TMDs)
7) Adhesive Dentistry / Dental Materials / Aesthetic Dentistry
8) Maxillofacial Prosthodontics and Dysphagia Rehabilitation
9) Digital Dentistry
Prosthodontic treatment may become necessary as a result of developmental or acquired disturbances in the orofacial region, of orofacial trauma, or of a variety of dental and oral diseases and orofacial pain conditions.
Reviews, Original articles, technical procedure and case reports can be submitted. Letters to the Editor commenting on papers or any aspect of Journal of Prosthodontic Research are welcomed.