{"title":"Root nodule organogenesis: a unique lateral organogenesis in legumes.","authors":"Takuya Suzaki","doi":"10.1270/jsbbs.22067","DOIUrl":null,"url":null,"abstract":"<p><p>During the course of plant evolution, leguminous and a few plants species have established root nodule symbiosis (RNS), one of the nitrogen nutrient acquisition strategies based on mutual interaction between plants and nitrogen-fixing bacteria. In addition to its useful agronomic trait, RNS comprises a unique form of plant lateral organogenesis; dedifferentiation and activation of cortical cells in the root are induced upon bacterial infection during nodule development. In the past few years, the elucidations of the significance of NODULE INCEPTION transcription factor as a potentially key innovative factor of RNS, the details of its function, and the successive discoveries of its target genes have advanced our understanding underlying molecular mechanisms of nodule organogenesis. In addition, a recent elucidation of the role of legume SHORTROOT-SCARECROW module has provided the insights into the unique properties of legume cortical cells. Here, I summarize such latest findings on the neofunctionalized key players of nodule organogenesis, which may provide clue to understand an evolutionary basis of RNS.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"73 1","pages":"70-75"},"PeriodicalIF":2.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165338/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.22067","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1
Abstract
During the course of plant evolution, leguminous and a few plants species have established root nodule symbiosis (RNS), one of the nitrogen nutrient acquisition strategies based on mutual interaction between plants and nitrogen-fixing bacteria. In addition to its useful agronomic trait, RNS comprises a unique form of plant lateral organogenesis; dedifferentiation and activation of cortical cells in the root are induced upon bacterial infection during nodule development. In the past few years, the elucidations of the significance of NODULE INCEPTION transcription factor as a potentially key innovative factor of RNS, the details of its function, and the successive discoveries of its target genes have advanced our understanding underlying molecular mechanisms of nodule organogenesis. In addition, a recent elucidation of the role of legume SHORTROOT-SCARECROW module has provided the insights into the unique properties of legume cortical cells. Here, I summarize such latest findings on the neofunctionalized key players of nodule organogenesis, which may provide clue to understand an evolutionary basis of RNS.
期刊介绍:
Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews
related to breeding. Research Papers are standard original articles.
Notes report new cultivars, breeding lines, germplasms, genetic
stocks, mapping populations, database, software, and techniques
significant and useful for breeding. Reviews summarize recent and
historical events related breeding.
Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors
prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.