Root nodule organogenesis: a unique lateral organogenesis in legumes.

IF 2 4区 农林科学 Q2 AGRONOMY Breeding Science Pub Date : 2023-03-01 DOI:10.1270/jsbbs.22067
Takuya Suzaki
{"title":"Root nodule organogenesis: a unique lateral organogenesis in legumes.","authors":"Takuya Suzaki","doi":"10.1270/jsbbs.22067","DOIUrl":null,"url":null,"abstract":"<p><p>During the course of plant evolution, leguminous and a few plants species have established root nodule symbiosis (RNS), one of the nitrogen nutrient acquisition strategies based on mutual interaction between plants and nitrogen-fixing bacteria. In addition to its useful agronomic trait, RNS comprises a unique form of plant lateral organogenesis; dedifferentiation and activation of cortical cells in the root are induced upon bacterial infection during nodule development. In the past few years, the elucidations of the significance of NODULE INCEPTION transcription factor as a potentially key innovative factor of RNS, the details of its function, and the successive discoveries of its target genes have advanced our understanding underlying molecular mechanisms of nodule organogenesis. In addition, a recent elucidation of the role of legume SHORTROOT-SCARECROW module has provided the insights into the unique properties of legume cortical cells. Here, I summarize such latest findings on the neofunctionalized key players of nodule organogenesis, which may provide clue to understand an evolutionary basis of RNS.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"73 1","pages":"70-75"},"PeriodicalIF":2.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165338/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.22067","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1

Abstract

During the course of plant evolution, leguminous and a few plants species have established root nodule symbiosis (RNS), one of the nitrogen nutrient acquisition strategies based on mutual interaction between plants and nitrogen-fixing bacteria. In addition to its useful agronomic trait, RNS comprises a unique form of plant lateral organogenesis; dedifferentiation and activation of cortical cells in the root are induced upon bacterial infection during nodule development. In the past few years, the elucidations of the significance of NODULE INCEPTION transcription factor as a potentially key innovative factor of RNS, the details of its function, and the successive discoveries of its target genes have advanced our understanding underlying molecular mechanisms of nodule organogenesis. In addition, a recent elucidation of the role of legume SHORTROOT-SCARECROW module has provided the insights into the unique properties of legume cortical cells. Here, I summarize such latest findings on the neofunctionalized key players of nodule organogenesis, which may provide clue to understand an evolutionary basis of RNS.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根瘤器官发生:豆科植物中一种独特的侧边器官发生。
在植物进化过程中,豆科植物和少数植物物种建立了根结共生(root nodule symbiosis, RNS),这是植物与固氮细菌相互作用的氮养分获取策略之一。除了其有用的农艺性状外,RNS还包括一种独特的植物侧枝器官发生形式;根瘤发育过程中,细菌感染可诱导根部皮层细胞的去分化和活化。近年来,对NODULE INCEPTION转录因子作为RNS潜在关键创新因子意义的阐明、其功能的细节以及其靶基因的陆续发现,促进了我们对结节器官发生的分子机制的理解。此外,最近对豆科植物shortroot -稻草人模块的作用的阐明,为豆科植物皮质细胞的独特特性提供了见解。在此,我总结了这些关于结节器官发生的新功能关键参与者的最新发现,这可能为理解RNS的进化基础提供线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Breeding Science
Breeding Science 农林科学-农艺学
CiteScore
4.90
自引率
4.20%
发文量
37
审稿时长
1.5 months
期刊介绍: Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews related to breeding. Research Papers are standard original articles. Notes report new cultivars, breeding lines, germplasms, genetic stocks, mapping populations, database, software, and techniques significant and useful for breeding. Reviews summarize recent and historical events related breeding. Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.
期刊最新文献
Identification of a major QTL conferring resistance to wheat yellow mosaic virus derived from the winter wheat 'Hokkai 240' on chromosome 2AS. Phenotyping and a genome-wide association study of elite lines of pearl millet. Screening corn hybrids for early-stage drought stress tolerance using SPAR phenotyping platform. Substitution mapping and characterization of brown planthopper resistance genes from traditional rice cultivar 'Rathu Heenati' (Oryza sativa L.). THB1, a putative transmembrane protein that causes hybrid breakdown in rice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1