{"title":"Interpretable Skin Cancer Classification based on Incremental Domain Knowledge Learning.","authors":"Eman Rezk, Mohamed Eltorki, Wael El-Dakhakhni","doi":"10.1007/s41666-023-00127-4","DOIUrl":null,"url":null,"abstract":"<p><p>The recent advances in artificial intelligence have led to the rapid development of computer-aided skin cancer diagnosis applications that perform on par with dermatologists. However, the black-box nature of such applications makes it difficult for physicians to trust the predicted decisions, subsequently preventing the proliferation of such applications in the clinical workflow. In this work, we aim to address this challenge by developing an interpretable skin cancer diagnosis approach using clinical images. Accordingly, a skin cancer diagnosis model consolidated with two interpretability methods is developed. The first interpretability method integrates skin cancer diagnosis domain knowledge, characterized by a skin lesion taxonomy, into model development, whereas the other method focuses on visualizing the decision-making process by highlighting the dominant of interest regions of skin lesion images. The proposed model is trained and validated on clinical images since the latter are easily obtainable by non-specialist healthcare providers. The results demonstrate the effectiveness of incorporating lesion taxonomy in improving model classification accuracy, where our model can predict the skin lesion origin as melanocytic or non-melanocytic with an accuracy of 87%, predict lesion malignancy with 77% accuracy, and provide disease diagnosis with an accuracy of 71%. In addition, the implemented interpretability methods assist understand the model's decision-making process and detecting misdiagnoses. This work is a step toward achieving interpretability in skin cancer diagnosis using clinical images. The developed approach can assist general practitioners to make an early diagnosis, thus reducing the redundant referrals that expert dermatologists receive for further investigations.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995827/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-023-00127-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The recent advances in artificial intelligence have led to the rapid development of computer-aided skin cancer diagnosis applications that perform on par with dermatologists. However, the black-box nature of such applications makes it difficult for physicians to trust the predicted decisions, subsequently preventing the proliferation of such applications in the clinical workflow. In this work, we aim to address this challenge by developing an interpretable skin cancer diagnosis approach using clinical images. Accordingly, a skin cancer diagnosis model consolidated with two interpretability methods is developed. The first interpretability method integrates skin cancer diagnosis domain knowledge, characterized by a skin lesion taxonomy, into model development, whereas the other method focuses on visualizing the decision-making process by highlighting the dominant of interest regions of skin lesion images. The proposed model is trained and validated on clinical images since the latter are easily obtainable by non-specialist healthcare providers. The results demonstrate the effectiveness of incorporating lesion taxonomy in improving model classification accuracy, where our model can predict the skin lesion origin as melanocytic or non-melanocytic with an accuracy of 87%, predict lesion malignancy with 77% accuracy, and provide disease diagnosis with an accuracy of 71%. In addition, the implemented interpretability methods assist understand the model's decision-making process and detecting misdiagnoses. This work is a step toward achieving interpretability in skin cancer diagnosis using clinical images. The developed approach can assist general practitioners to make an early diagnosis, thus reducing the redundant referrals that expert dermatologists receive for further investigations.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis