Romuald Ferre, Janne Elst, Seanthan Senthilnathan, Andrew Lagree, Sami Tabbarah, Fang-I Lu, Ali Sadeghi-Naini, William T Tran, Belinda Curpen
{"title":"Machine learning analysis of breast ultrasound to classify triple negative and HER2+ breast cancer subtypes.","authors":"Romuald Ferre, Janne Elst, Seanthan Senthilnathan, Andrew Lagree, Sami Tabbarah, Fang-I Lu, Ali Sadeghi-Naini, William T Tran, Belinda Curpen","doi":"10.3233/BD-220018","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Early diagnosis of triple-negative (TN) and human epidermal growth factor receptor 2 positive (HER2+) breast cancer is important due to its increased risk of micrometastatic spread necessitating early treatment and for guiding targeted therapies. This study aimed to evaluate the diagnostic performance of machine learning (ML) classification of newly diagnosed breast masses into TN versus non-TN (NTN) and HER2+ versus HER2 negative (HER2-) breast cancer, using radiomic features extracted from grayscale ultrasound (US) b-mode images.</p><p><strong>Materials and methods: </strong>A retrospective chart review identified 88 female patients who underwent diagnostic breast US imaging, had confirmation of invasive malignancy on pathology and receptor status determined on immunohistochemistry available. The patients were classified as TN, NTN, HER2+ or HER2- for ground-truth labelling. For image analysis, breast masses were manually segmented by a breast radiologist. Radiomic features were extracted per image and used for predictive modelling. Supervised ML classifiers included: logistic regression, k-nearest neighbour, and Naïve Bayes. Classification performance measures were calculated on an independent (unseen) test set. The area under the receiver operating characteristic curve (AUC), sensitivity (%), and specificity (%) were reported for each classifier.</p><p><strong>Results: </strong>The logistic regression classifier demonstrated the highest AUC: 0.824 (sensitivity: 81.8%, specificity: 74.2%) for the TN sub-group and 0.778 (sensitivity: 71.4%, specificity: 71.6%) for the HER2 sub-group.</p><p><strong>Conclusion: </strong>ML classifiers demonstrate high diagnostic accuracy in classifying TN versus NTN and HER2+ versus HER2- breast cancers using US images. Identification of more aggressive breast cancer subtypes early in the diagnostic process could help achieve better prognoses by prioritizing clinical referral and prompting adequate early treatment.</p>","PeriodicalId":9224,"journal":{"name":"Breast disease","volume":"42 1","pages":"59-66"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/BD-220018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Objectives: Early diagnosis of triple-negative (TN) and human epidermal growth factor receptor 2 positive (HER2+) breast cancer is important due to its increased risk of micrometastatic spread necessitating early treatment and for guiding targeted therapies. This study aimed to evaluate the diagnostic performance of machine learning (ML) classification of newly diagnosed breast masses into TN versus non-TN (NTN) and HER2+ versus HER2 negative (HER2-) breast cancer, using radiomic features extracted from grayscale ultrasound (US) b-mode images.
Materials and methods: A retrospective chart review identified 88 female patients who underwent diagnostic breast US imaging, had confirmation of invasive malignancy on pathology and receptor status determined on immunohistochemistry available. The patients were classified as TN, NTN, HER2+ or HER2- for ground-truth labelling. For image analysis, breast masses were manually segmented by a breast radiologist. Radiomic features were extracted per image and used for predictive modelling. Supervised ML classifiers included: logistic regression, k-nearest neighbour, and Naïve Bayes. Classification performance measures were calculated on an independent (unseen) test set. The area under the receiver operating characteristic curve (AUC), sensitivity (%), and specificity (%) were reported for each classifier.
Results: The logistic regression classifier demonstrated the highest AUC: 0.824 (sensitivity: 81.8%, specificity: 74.2%) for the TN sub-group and 0.778 (sensitivity: 71.4%, specificity: 71.6%) for the HER2 sub-group.
Conclusion: ML classifiers demonstrate high diagnostic accuracy in classifying TN versus NTN and HER2+ versus HER2- breast cancers using US images. Identification of more aggressive breast cancer subtypes early in the diagnostic process could help achieve better prognoses by prioritizing clinical referral and prompting adequate early treatment.
期刊介绍:
The recent expansion of work in the field of breast cancer inevitably will hasten discoveries that will have impact on patient outcome. The breadth of this research that spans basic science, clinical medicine, epidemiology, and public policy poses difficulties for investigators. Not only is it necessary to be facile in comprehending ideas from many disciplines, but also important to understand the public implications of these discoveries. Breast Disease publishes review issues devoted to an in-depth analysis of the scientific and public implications of recent research on a specific problem in breast cancer. Thus, the reviews will not only discuss recent discoveries but will also reflect on their impact in breast cancer research or clinical management.