Veronika V. Koziaeva , Dimitry Y. Sorokin , Tatiana V. Kolganova , Denis S. Grouzdev
{"title":"Magnetospirillum sulfuroxidans sp. nov., capable of sulfur-dependent lithoautotrophy and a taxonomic reevaluation of the order Rhodospirillales","authors":"Veronika V. Koziaeva , Dimitry Y. Sorokin , Tatiana V. Kolganova , Denis S. Grouzdev","doi":"10.1016/j.syapm.2023.126406","DOIUrl":null,"url":null,"abstract":"<div><p>A spiral-shaped, highly motile bacterium was isolated from freshwater sulfidic sediment. Strain J10<sup>T</sup><span> is a facultative autotroph<span> utilizing sulfide, thiosulfate, and sulfur as the electron donors in microoxic conditions. Despite high 16S rRNA gene sequence sequence identity to </span></span><span><em>Magnetospirillum</em><em> gryphiswaldense</em></span> MSR-1 <sup>T</sup> (99.6 %), digital DNA-DNA hybridisation homology and average nucleotide identity between the two strains was of the different species level (25 % and 83 %, respectively). Strain J10<sup>T</sup><span> is not magnetotactic. The DNA G + C content of strain J10</span><sup>T</sup><span> is 61.9 %. The predominant phospholipid ester-linked fatty acids are C18:1ω7, C16:1ω7, and C16:0. Strain J10</span><sup>T</sup> (=DSM 23205 <sup>T</sup> = VKM B-3486 <sup>T</sup>) is the first strain of the genus <em>Magnetospirillum</em> showing lithoautotrophic growth and is proposed here as a novel species, <em>Magnetospirillum sulfuroxidans</em> sp. nov. In addition, we propose to establish a framework for distinguishing genera and families within the order <span><em>Rhodospirillales</em></span><span> based on phylogenomic<span> analysis using the threshold values for average amino acid identity at ̴ 72 % for genera and ̴ 60 % for families. According to this, we propose to divide the existing genus </span></span><em>Magnetospirillum</em> into three genera: <em>Magnetospirillum</em>, <em>Paramagnetospirillum</em>, and <em>Phaeospirillum</em>, constituting a separate family <em>Magnetospirillaceae</em> fam. nov. in the order <em>Rhodospirillales</em>. Furthermore, phylogenomic data suggest that this order should accomodate six more new family level groups including <em>Magnetospiraceae</em> fam. nov., <em>Magnetovibrionaceae</em> fam. nov., <em>Dongiaceae</em> fam. nov., <em>Niveispirillaceae</em> fam. nov., <em>Fodinicurvataceae</em> fam. nov., and <em>Oceanibaculaceae</em> fam. nov.</p></div>","PeriodicalId":22124,"journal":{"name":"Systematic and applied microbiology","volume":"46 3","pages":"Article 126406"},"PeriodicalIF":3.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic and applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723202023000152","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
A spiral-shaped, highly motile bacterium was isolated from freshwater sulfidic sediment. Strain J10T is a facultative autotroph utilizing sulfide, thiosulfate, and sulfur as the electron donors in microoxic conditions. Despite high 16S rRNA gene sequence sequence identity to Magnetospirillum gryphiswaldense MSR-1 T (99.6 %), digital DNA-DNA hybridisation homology and average nucleotide identity between the two strains was of the different species level (25 % and 83 %, respectively). Strain J10T is not magnetotactic. The DNA G + C content of strain J10T is 61.9 %. The predominant phospholipid ester-linked fatty acids are C18:1ω7, C16:1ω7, and C16:0. Strain J10T (=DSM 23205 T = VKM B-3486 T) is the first strain of the genus Magnetospirillum showing lithoautotrophic growth and is proposed here as a novel species, Magnetospirillum sulfuroxidans sp. nov. In addition, we propose to establish a framework for distinguishing genera and families within the order Rhodospirillales based on phylogenomic analysis using the threshold values for average amino acid identity at ̴ 72 % for genera and ̴ 60 % for families. According to this, we propose to divide the existing genus Magnetospirillum into three genera: Magnetospirillum, Paramagnetospirillum, and Phaeospirillum, constituting a separate family Magnetospirillaceae fam. nov. in the order Rhodospirillales. Furthermore, phylogenomic data suggest that this order should accomodate six more new family level groups including Magnetospiraceae fam. nov., Magnetovibrionaceae fam. nov., Dongiaceae fam. nov., Niveispirillaceae fam. nov., Fodinicurvataceae fam. nov., and Oceanibaculaceae fam. nov.
期刊介绍:
Systematic and Applied Microbiology deals with various aspects of microbial diversity and systematics of prokaryotes. It focuses on Bacteria and Archaea; eukaryotic microorganisms will only be considered in rare cases. The journal perceives a broad understanding of microbial diversity and encourages the submission of manuscripts from the following branches of microbiology: