Mechanism-based Suppression of Cancer by Targeting DNA-Replicating Enzymes.

IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current protein & peptide science Pub Date : 2024-01-01 DOI:10.2174/1389203724666230512144011
Preeti Arya, Hitesh Malhotra, Benu Chaudhary, Amrit Sarwara, Rajat Goyal, Chunpeng Wan, Dinesh Kumar Mishra, Rupesh Kumar Gautam
{"title":"Mechanism-based Suppression of Cancer by Targeting DNA-Replicating Enzymes.","authors":"Preeti Arya, Hitesh Malhotra, Benu Chaudhary, Amrit Sarwara, Rajat Goyal, Chunpeng Wan, Dinesh Kumar Mishra, Rupesh Kumar Gautam","doi":"10.2174/1389203724666230512144011","DOIUrl":null,"url":null,"abstract":"<p><p>The human genetic structure undergoes continuous wear and tear process due to the mere presence of extrinsic as well as intrinsic factors. In normal physiological cells, DNA damage initiates various checkpoints that may activate the repair system or induce apoptosis that helps maintain cellular integrity. While in cancerous cells, due to alterations in signaling pathways and defective checkpoints, there exists a marked deviation of error-free DNA repairing/synthesis. Currently, cancer therapy targeting the DNA damage response shows significant therapeutic potential by tailoring the therapy from non-specific to tumor-specific activity. Recently, numerous drugs that target the DNA replicating enzymes have been approved or some are under clinical trial. Drugs like PARP and PARG inhibitors showed sweeping effects against cancer cells. This review highlights the mechanistic study of different drug categories that target DNA replication and thus depicts the futuristic approach of targeted therapy.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"4-11"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389203724666230512144011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The human genetic structure undergoes continuous wear and tear process due to the mere presence of extrinsic as well as intrinsic factors. In normal physiological cells, DNA damage initiates various checkpoints that may activate the repair system or induce apoptosis that helps maintain cellular integrity. While in cancerous cells, due to alterations in signaling pathways and defective checkpoints, there exists a marked deviation of error-free DNA repairing/synthesis. Currently, cancer therapy targeting the DNA damage response shows significant therapeutic potential by tailoring the therapy from non-specific to tumor-specific activity. Recently, numerous drugs that target the DNA replicating enzymes have been approved or some are under clinical trial. Drugs like PARP and PARG inhibitors showed sweeping effects against cancer cells. This review highlights the mechanistic study of different drug categories that target DNA replication and thus depicts the futuristic approach of targeted therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以 DNA 复制酶为靶标的癌症抑制机制
仅仅由于外在和内在因素的存在,人类基因结构就经历了持续的磨损过程。在正常的生理细胞中,DNA 损伤会启动各种检查点,从而激活修复系统或诱导细胞凋亡,帮助维持细胞的完整性。而在癌细胞中,由于信号通路的改变和检查点的缺陷,存在着明显的无差错 DNA 修复/合成偏差。目前,以 DNA 损伤反应为靶点的癌症疗法具有显著的治疗潜力,可将非特异性疗法调整为肿瘤特异性疗法。最近,许多针对 DNA 复制酶的药物已经获得批准,或正在进行临床试验。PARP和PARG抑制剂等药物对癌细胞产生了巨大的作用。这篇综述重点介绍了针对 DNA 复制的不同药物类别的机理研究,从而描绘了靶向治疗的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current protein & peptide science
Current protein & peptide science 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.
期刊最新文献
Comparative Proteomic Analysis of Cell Wall Proteins of Aminoglycosides Resistant and Sensitive Mycobacterium tuberculosis Clinical Isolates. Myotoxicity of Crotoxin on C2C12 Myoblasts and its Inhibition by Crotalus Neutralizing Factor versus Enhanced Resistance in Myotubes: Exploring Toxicity and Membrane Potential. Insights into the Binding of Metadoxine with Bovine Serum Albumin: A Multi-Spectroscopic Investigation Combined with Molecular Docking. A Study on the Rationality of Baicalein in the Treatment of Osteoporosis: A Narrative Review. Effects of the Amyotrophic Lateral Sclerosis-related Q108P Mutation on the Structural Ensemble Characteristics of CHCHD10.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1