Inhibition of cGAS aggravated the host inflammatory response to Aspergillus fumigatus.

IF 1.5 4区 医学 Q3 RESPIRATORY SYSTEM Experimental Lung Research Pub Date : 2023-01-01 Epub Date: 2023-05-16 DOI:10.1080/01902148.2023.2211663
Mei Peng, Xiujun Li, Xiaobing Zhang, Li Peng
{"title":"Inhibition of cGAS aggravated the host inflammatory response to <i>Aspergillus fumigatus</i>.","authors":"Mei Peng, Xiujun Li, Xiaobing Zhang, Li Peng","doi":"10.1080/01902148.2023.2211663","DOIUrl":null,"url":null,"abstract":"<p><p><b>Backgroud:</b> <i>Aspergillus fumigatus</i> (<i>A. fumigatus</i>) is a clinically important fungal pathogen. Invasive pulmonary aspergillosis (IPA) is the main fungal infection with increased morbidity and mortality in immunocompromised populations, although treatments are available. An innate DNA sensor known as cyclic GMP-AMP Synthase (cGAS) has recently been discovered that senses invading pathogens and has a significant impact on innate immunity. It can activate the cGAS-STING signaling pathway to stimulate downstream signals. But it is still unclear what role it plays in IPA's pathogenesis.<b>Methods:</b> An investigation into the infection of <i>A. fumigatus</i> was conducted by inhibiting cGAS activity <i>in vivo</i> and <i>in vitro</i> using siRNA and RU.521(an inhibitor of cGAS).<b>Results:</b> We discovered that suppressing cGAS increased the host's susceptibility to <i>A. fumigatus</i> and harmed those with infections by enhancing pulmonary tissue damage and edema, as well as decreasing fungal clearance. Furthermore, our findings show that inhibiting or silencing cGAS can exacerbate the inflammatory response in IPA mouse models and human bronchi epithelial cells (HBECs) treated with <i>A. fumigatus</i> by upregulating the production of inflammatory genes with non-type 1 interferon.<b>Conclusion:</b> Based on our analysis, we conclude that activating cGAS might increase host resistance to <i>A. fumigatus</i>, protect against pulmonary illnesses brought on by <i>A. fumigatus</i> and that exploring the cGAS-STING signaling pathway is beneficial not only for the immunological investigation of IPA but also may be a potential therapeutic objective.</p>","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":" ","pages":"86-100"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2023.2211663","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Backgroud: Aspergillus fumigatus (A. fumigatus) is a clinically important fungal pathogen. Invasive pulmonary aspergillosis (IPA) is the main fungal infection with increased morbidity and mortality in immunocompromised populations, although treatments are available. An innate DNA sensor known as cyclic GMP-AMP Synthase (cGAS) has recently been discovered that senses invading pathogens and has a significant impact on innate immunity. It can activate the cGAS-STING signaling pathway to stimulate downstream signals. But it is still unclear what role it plays in IPA's pathogenesis.Methods: An investigation into the infection of A. fumigatus was conducted by inhibiting cGAS activity in vivo and in vitro using siRNA and RU.521(an inhibitor of cGAS).Results: We discovered that suppressing cGAS increased the host's susceptibility to A. fumigatus and harmed those with infections by enhancing pulmonary tissue damage and edema, as well as decreasing fungal clearance. Furthermore, our findings show that inhibiting or silencing cGAS can exacerbate the inflammatory response in IPA mouse models and human bronchi epithelial cells (HBECs) treated with A. fumigatus by upregulating the production of inflammatory genes with non-type 1 interferon.Conclusion: Based on our analysis, we conclude that activating cGAS might increase host resistance to A. fumigatus, protect against pulmonary illnesses brought on by A. fumigatus and that exploring the cGAS-STING signaling pathway is beneficial not only for the immunological investigation of IPA but also may be a potential therapeutic objective.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抑制 cGAS 会加重宿主对曲霉菌的炎症反应。
背景介绍烟曲霉(A. fumigatus)是一种临床上重要的真菌病原体。侵袭性肺曲霉菌病(IPA)是主要的真菌感染病,尽管有治疗方法,但在免疫力低下的人群中发病率和死亡率都会增加。最近发现的一种先天 DNA 传感器被称为环 GMP-AMP 合成酶(cGAS),它能感知入侵的病原体,并对先天免疫产生重大影响。它可以激活 cGAS-STING 信号通路,刺激下游信号。但它在 IPA 发病机制中扮演什么角色仍不清楚:方法:通过使用 siRNA 和 RU.521(一种 cGAS 抑制剂)抑制 cGAS 在体内和体外的活性,对烟曲霉的感染进行了研究:结果:我们发现,抑制 cGAS 会增加宿主对烟曲霉的易感性,并通过增强肺组织损伤和水肿以及降低真菌清除率来危害感染者。此外,我们的研究结果表明,抑制或沉默 cGAS 可通过上调非 1 型干扰素产生的炎症基因,加剧经烟曲霉菌处理的 IPA 小鼠模型和人类支气管上皮细胞(HBECs)的炎症反应:根据我们的分析,我们得出结论:激活 cGAS 可增强宿主对烟曲霉的抵抗力,保护宿主免受烟曲霉引起的肺部疾病的侵袭,而且探索 cGAS-STING 信号通路不仅有利于 IPA 的免疫学研究,而且可能是一个潜在的治疗目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Lung Research
Experimental Lung Research 医学-呼吸系统
CiteScore
3.80
自引率
0.00%
发文量
23
审稿时长
2 months
期刊介绍: Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia. Authors can choose to publish gold open access in this journal.
期刊最新文献
Involvement of PRDX6 in the protective role of MANF in acute lung injury in rats. Exosomes derived from hypoxic alveolar epithelial cells promote the phenotypic transformation of pulmonary artery smooth muscle cells via the Rap1 pathway Treatment with inhaled aerosolised ethanol reduces viral load and potentiates macrophage responses in an established influenza mouse model Inhibition of GBP5 activates autophagy to alleviate inflammatory response in LPS-induced lung injury in mice Differential changes in expression of inflammatory mRNA and protein after oleic acid-induced acute lung injury
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1