Stutzerimonas decontaminans sp. nov. isolated from marine polluted sediments

IF 3.3 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Systematic and applied microbiology Pub Date : 2023-04-01 DOI:10.1016/j.syapm.2023.126400
Magdalena Mulet , Margarita Gomila , Jorge Lalucat , Rafael Bosch , Ramon Rossello-Mora , Elena García-Valdés
{"title":"Stutzerimonas decontaminans sp. nov. isolated from marine polluted sediments","authors":"Magdalena Mulet ,&nbsp;Margarita Gomila ,&nbsp;Jorge Lalucat ,&nbsp;Rafael Bosch ,&nbsp;Ramon Rossello-Mora ,&nbsp;Elena García-Valdés","doi":"10.1016/j.syapm.2023.126400","DOIUrl":null,"url":null,"abstract":"<div><p>Strains 19SMN4<sup>T</sup> and ST27MN3 were isolated from marine sediments after enrichment with 2-methylnaphthalene and were classified as <em>Pseudomonas stutzeri</em> genomovar 4. Four other strains, BG 2, HT20, HT24, and A7, were isolated from sulphide-oxidizing bioreactors or activated sludge affiliated with the same clade in the 16S rRNA phylogenetic tree. <em>P. stutzeri</em> has been recently reclassified as a new genus, <em>Stutzerimonas,</em> and a preliminary analysis indicated that the strains in this study were distinct from any classified <em>Stutzerimonas</em> and are considered representatives of phylogenomic species 4 (pgs4). Strains 19SMN4<sup>T</sup> and ST27MN3 were extensively characterized with phenotypic, chemotaxonomic, genomic and phylogenomic data. Strain 19SMN4<sup>T</sup> had a well-characterized naphthalene degradative plasmid that has been compared with other plasmids, while in strain ST27MN3, the naphthalene degradative genes were detected in the chromosome sequence. Phylogenomic analysis of the core gene sequences showed that strains 19SMN4<sup>T</sup> and ST27MN3 shared 3,995 genes and were closely related to members of the species “<em>Stutzerimonas songnenensis”</em> and <em>Stutzerimonas perfectomarina</em>, as well as to the <em>Stutzerimonas</em> phylogenomic species, pgs9, pgs16 and pgs24. The aggregate average nucleotide identity (ANI) indicated that strains 19SMN4<sup>T</sup> and ST27MN3 belonged to the same genomic species, whereas the genomic indices with their closest-related type strains were below the accepted species threshold (95 %)<em>.</em> We therefore conclude that strains 19SMN4<sup>T</sup> and ST27MN3 represent a novel species of <em>Stutzerimonas</em>, for which the name <em>Stutzerimonas decontaminans</em> is proposed; the type strain is 19SMN4<sup>T</sup> (=CCUG44593<sup>T</sup> = DSM6084<sup>T</sup> = LMG18521<sup>T</sup>).</p></div>","PeriodicalId":22124,"journal":{"name":"Systematic and applied microbiology","volume":"46 2","pages":"Article 126400"},"PeriodicalIF":3.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic and applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723202023000097","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Strains 19SMN4T and ST27MN3 were isolated from marine sediments after enrichment with 2-methylnaphthalene and were classified as Pseudomonas stutzeri genomovar 4. Four other strains, BG 2, HT20, HT24, and A7, were isolated from sulphide-oxidizing bioreactors or activated sludge affiliated with the same clade in the 16S rRNA phylogenetic tree. P. stutzeri has been recently reclassified as a new genus, Stutzerimonas, and a preliminary analysis indicated that the strains in this study were distinct from any classified Stutzerimonas and are considered representatives of phylogenomic species 4 (pgs4). Strains 19SMN4T and ST27MN3 were extensively characterized with phenotypic, chemotaxonomic, genomic and phylogenomic data. Strain 19SMN4T had a well-characterized naphthalene degradative plasmid that has been compared with other plasmids, while in strain ST27MN3, the naphthalene degradative genes were detected in the chromosome sequence. Phylogenomic analysis of the core gene sequences showed that strains 19SMN4T and ST27MN3 shared 3,995 genes and were closely related to members of the species “Stutzerimonas songnenensis” and Stutzerimonas perfectomarina, as well as to the Stutzerimonas phylogenomic species, pgs9, pgs16 and pgs24. The aggregate average nucleotide identity (ANI) indicated that strains 19SMN4T and ST27MN3 belonged to the same genomic species, whereas the genomic indices with their closest-related type strains were below the accepted species threshold (95 %). We therefore conclude that strains 19SMN4T and ST27MN3 represent a novel species of Stutzerimonas, for which the name Stutzerimonas decontaminans is proposed; the type strain is 19SMN4T (=CCUG44593T = DSM6084T = LMG18521T).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从海洋污染沉积物中分离的去污Stutzerimonas s.11 .
菌株19SMN4T和ST27MN3是用2-甲基萘富集后从海洋沉积物中分离出来的,被归类为斯氏假单胞菌4型。另外四个菌株,BG 2、HT20、HT24和A7,是从16S rRNA系统发育树中属于同一分支的硫化物氧化生物反应器或活性污泥中分离出来的。stutzeri P.stutzeri最近被重新分类为一个新属Stutzerimonas,初步分析表明,本研究中的菌株不同于任何分类的Stutzerimanas,被认为是系统发育物种4(pgs4)的代表。菌株19SMN4T和ST27MN3通过表型、化学分类学、基因组和系统发育学数据进行了广泛的鉴定。菌株19SMN4T具有一个特征良好的萘降解质粒,并与其他质粒进行了比较,而菌株ST27MN3在染色体序列中检测到萘降解基因。对核心基因序列的系统发育基因组分析表明,菌株19SMN4T和ST27MN3共有3995个基因,与“Stutzerimonas sonnenensis”和Stutzerimonas perfectomarina物种的成员以及Stutzerimanas系统发育组物种pgs9、pgs16和pgs24密切相关。总平均核苷酸同一性(ANI)表明,菌株19SMN4T和ST27MN3属于相同的基因组物种,而其最接近的亲缘型菌株的基因组指数低于可接受的物种阈值(95%)。因此,我们得出结论,菌株19SMN4T和ST27MN3代表了Stutzerimonas的一个新物种,为此提出了Stutzeimonas decominans的名称;类型菌株为19SMN4T(=CCUG44593T=DSM6084T=LMG18521T)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Systematic and applied microbiology
Systematic and applied microbiology 生物-生物工程与应用微生物
CiteScore
7.50
自引率
5.90%
发文量
57
审稿时长
22 days
期刊介绍: Systematic and Applied Microbiology deals with various aspects of microbial diversity and systematics of prokaryotes. It focuses on Bacteria and Archaea; eukaryotic microorganisms will only be considered in rare cases. The journal perceives a broad understanding of microbial diversity and encourages the submission of manuscripts from the following branches of microbiology:
期刊最新文献
Natronorarus salvus gen. nov., sp. nov., Halalkalicoccus ordinarius sp. nov., and Halalkalicoccus salilacus sp. nov., halophilic archaea from a soda lake and two saline lakes, and proposal to classify the genera Halalkalicoccus and Natronorarus into Halalkalicoccaceae fam. nov. in the order Halobacteriales within the class Halobacteria. Description of Albidovulum litorale sp. nov., Albidovulum marisflavi sp. nov., Albidovulum salinarum sp. nov., and Albidovulum sediminicola sp. nov., and proposal for reclassification of the genus Defluviimonas as a later heterotypic synonym of Albidovulum. Diversity and physiology of abundant Rhodoferax species in global wastewater treatment systems. Description of Hyphococcus formosus sp. nov. and Hyphococcus lacteus sp. nov., isolated from coastal sediment, and reclassification of Marinicaulis flavus as Hyphococcus luteus nom. nov. and Marinicaulis aureus as Hyphococcus aureus comb. nov. Methyloraptor flagellatus gen. Nov., sp. nov., novel Ancalomicrobiaceae-affiliated facultatively methylotrophic bacteria that feed on methanotrophs of the genus Methylococcus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1