Evaluating network-based missing protein prediction using p-values, Bayes Factors, and probabilities.

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Bioinformatics and Computational Biology Pub Date : 2023-02-01 DOI:10.1142/S0219720023500051
Wilson Wen Bin Goh, Weijia Kong, Limsoon Wong
{"title":"Evaluating network-based missing protein prediction using <i>p</i>-values, Bayes Factors, and probabilities.","authors":"Wilson Wen Bin Goh,&nbsp;Weijia Kong,&nbsp;Limsoon Wong","doi":"10.1142/S0219720023500051","DOIUrl":null,"url":null,"abstract":"<p><p>Some prediction methods use probability to rank their predictions, while some other prediction methods do not rank their predictions and instead use [Formula: see text]-values to support their predictions. This disparity renders direct cross-comparison of these two kinds of methods difficult. In particular, approaches such as the Bayes Factor upper Bound (BFB) for [Formula: see text]-value conversion may not make correct assumptions for this kind of cross-comparisons. Here, using a well-established case study on renal cancer proteomics and in the context of missing protein prediction, we demonstrate how to compare these two kinds of prediction methods using two different strategies. The first strategy is based on false discovery rate (FDR) estimation, which does not make the same naïve assumptions as BFB conversions. The second strategy is a powerful approach which we colloquially call \"home ground testing\". Both strategies perform better than BFB conversions. Thus, we recommend comparing prediction methods by standardization to a common performance benchmark such as a global FDR. And where this is not possible, we recommend reciprocal \"home ground testing\".</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720023500051","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Some prediction methods use probability to rank their predictions, while some other prediction methods do not rank their predictions and instead use [Formula: see text]-values to support their predictions. This disparity renders direct cross-comparison of these two kinds of methods difficult. In particular, approaches such as the Bayes Factor upper Bound (BFB) for [Formula: see text]-value conversion may not make correct assumptions for this kind of cross-comparisons. Here, using a well-established case study on renal cancer proteomics and in the context of missing protein prediction, we demonstrate how to compare these two kinds of prediction methods using two different strategies. The first strategy is based on false discovery rate (FDR) estimation, which does not make the same naïve assumptions as BFB conversions. The second strategy is a powerful approach which we colloquially call "home ground testing". Both strategies perform better than BFB conversions. Thus, we recommend comparing prediction methods by standardization to a common performance benchmark such as a global FDR. And where this is not possible, we recommend reciprocal "home ground testing".

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用p值、贝叶斯因子和概率评估基于网络的缺失蛋白预测。
一些预测方法使用概率对其预测进行排序,而其他一些预测方法不对其预测进行排序,而是使用[公式:见文本]-值来支持其预测。这种差异使得对这两种方法进行直接交叉比较变得困难。特别是,诸如[公式:见文本]值转换的贝叶斯因子上限(BFB)等方法可能无法对这种交叉比较做出正确的假设。在此,我们利用一个关于肾癌蛋白质组学的成熟案例研究,并在缺失蛋白预测的背景下,展示了如何使用两种不同的策略来比较这两种预测方法。第一种策略是基于错误发现率(FDR)估计,它不做与BFB转换相同的naïve假设。第二种策略是一种强大的方法,我们通俗地称之为“主场测试”。这两种策略都比BFB转换效果更好。因此,我们建议将标准化的预测方法与通用的性能基准(如全局FDR)进行比较。如果这是不可能的,我们建议互惠的“主场测试”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
期刊最新文献
Construction of a multi-tissue compound-target interaction network of Qingfei Paidu decoction in COVID-19 treatment based on deep learning and transcriptomic analysis. PCA-constrained multi-core matrix fusion network: A novel approach for cancer subtype identification. Gtie-Rt: A comprehensive graph learning model for predicting drugs targeting metabolic pathways in human. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data. Construction of transcript regulation mechanism prediction models based on binding motif environment of transcription factor AoXlnR in Aspergillus oryzae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1