{"title":"Closed-Loop Deep Brain Stimulation for Psychiatric Disorders.","authors":"Alik S Widge","doi":"10.1097/HRP.0000000000000367","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Deep brain stimulation (DBS) is a well-established approach to treating medication-refractory neurological disorders and holds promise for treating psychiatric disorders. Despite strong open-label results in extremely refractory patients, DBS has struggled to meet endpoints in randomized controlled trials. A major challenge is stimulation \"dosing\"-DBS systems have many adjustable parameters, and clinicians receive little feedback on whether they have chosen the correct parameters for an individual patient. Multiple groups have proposed closed loop technologies as a solution. These systems sense electrical activity, identify markers of an (un)desired state, then automatically deliver or adjust stimulation to alter that electrical state. Closed loop DBS has been successfully deployed in movement disorders and epilepsy. The availability of that technology, as well as advances in opportunities for invasive research with neurosurgical patients, has yielded multiple pilot demonstrations in psychiatric illness. Those demonstrations split into two schools of thought, one rooted in well-established diagnoses and symptom scales, the other in the more experimental Research Domain Criteria (RDoC) framework. Both are promising, and both are limited by the boundaries of current stimulation technology. They are in turn driving advances in implantable recording hardware, signal processing, and stimulation paradigms. The combination of these advances is likely to change both our understanding of psychiatric neurobiology and our treatment toolbox, though the timeframe may be limited by the realities of implantable device development.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10188203/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HRP.0000000000000367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract: Deep brain stimulation (DBS) is a well-established approach to treating medication-refractory neurological disorders and holds promise for treating psychiatric disorders. Despite strong open-label results in extremely refractory patients, DBS has struggled to meet endpoints in randomized controlled trials. A major challenge is stimulation "dosing"-DBS systems have many adjustable parameters, and clinicians receive little feedback on whether they have chosen the correct parameters for an individual patient. Multiple groups have proposed closed loop technologies as a solution. These systems sense electrical activity, identify markers of an (un)desired state, then automatically deliver or adjust stimulation to alter that electrical state. Closed loop DBS has been successfully deployed in movement disorders and epilepsy. The availability of that technology, as well as advances in opportunities for invasive research with neurosurgical patients, has yielded multiple pilot demonstrations in psychiatric illness. Those demonstrations split into two schools of thought, one rooted in well-established diagnoses and symptom scales, the other in the more experimental Research Domain Criteria (RDoC) framework. Both are promising, and both are limited by the boundaries of current stimulation technology. They are in turn driving advances in implantable recording hardware, signal processing, and stimulation paradigms. The combination of these advances is likely to change both our understanding of psychiatric neurobiology and our treatment toolbox, though the timeframe may be limited by the realities of implantable device development.