Fathoming the Role of mTOR in Diabetes Mellitus and its Complications.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Current molecular pharmacology Pub Date : 2023-01-01 DOI:10.2174/1874467215666221005123919
Faheem, S Shanthi
{"title":"Fathoming the Role of mTOR in Diabetes Mellitus and its Complications.","authors":"Faheem,&nbsp;S Shanthi","doi":"10.2174/1874467215666221005123919","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanistic/Mammalian target of rapamycin (mTOR) orchestrates cellular homeostasis by controlling cell growth, proliferation, metabolism, and survival by integrating various growth factors, nutrients and amino acids. Eccentric synchronization of mTOR has been incriminated in various diseases/disorders like cancer, neurodegenerative disorders, and diabetes mellitus and its complications. Recent reports also highlight the role of mTOR in diabetes and its associated complications. This review tries to fathom the role of mTOR signaling in diabetes mellitus and its complications- diabetic cardiomyopathy, diabetic nephropathy, and diabetic retinopathy and highlights mTOR as a putative target for the development of novel anti-diabetic drug candidates.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular pharmacology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1874467215666221005123919","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Mechanistic/Mammalian target of rapamycin (mTOR) orchestrates cellular homeostasis by controlling cell growth, proliferation, metabolism, and survival by integrating various growth factors, nutrients and amino acids. Eccentric synchronization of mTOR has been incriminated in various diseases/disorders like cancer, neurodegenerative disorders, and diabetes mellitus and its complications. Recent reports also highlight the role of mTOR in diabetes and its associated complications. This review tries to fathom the role of mTOR signaling in diabetes mellitus and its complications- diabetic cardiomyopathy, diabetic nephropathy, and diabetic retinopathy and highlights mTOR as a putative target for the development of novel anti-diabetic drug candidates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解mTOR在糖尿病及其并发症中的作用。
雷帕霉素的机制/哺乳动物靶点(mTOR)通过整合各种生长因子、营养物质和氨基酸,通过控制细胞生长、增殖、代谢和存活来协调细胞内稳态。mTOR的偏心同步与多种疾病/障碍有关,如癌症、神经退行性疾病、糖尿病及其并发症。最近的报告还强调了mTOR在糖尿病及其相关并发症中的作用。本文旨在探讨mTOR信号在糖尿病及其并发症(糖尿病心肌病、糖尿病肾病和糖尿病视网膜病变)中的作用,并强调mTOR可能是开发新型抗糖尿病候选药物的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current molecular pharmacology
Current molecular pharmacology Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
4.90
自引率
3.70%
发文量
112
期刊介绍: Current Molecular Pharmacology aims to publish the latest developments in cellular and molecular pharmacology with a major emphasis on the mechanism of action of novel drugs under development, innovative pharmacological technologies, cell signaling, transduction pathway analysis, genomics, proteomics, and metabonomics applications to drug action. An additional focus will be the way in which normal biological function is illuminated by knowledge of the action of drugs at the cellular and molecular level. The journal publishes full-length/mini reviews, original research articles and thematic issues on molecular pharmacology. Current Molecular Pharmacology is an essential journal for every scientist who is involved in drug design and discovery, target identification, target validation, preclinical and clinical development of drugs therapeutically useful in human disease.
期刊最新文献
Anti-Cancer Role of Dendrosomal Nano Solanine in Chronic Myelogenous Leukemia Cell Line through Attenuation of PI3K/AKT/mTOR Signaling Pathway and Inhibition of hTERT Expression. Carvacrol as a Prospective Regulator of Cancer Targets/Signalling Pathways. Resveratrol Augments Doxorubicin and Cisplatin Chemotherapy: A Novel Therapeutic Strategy. PIASA, A Novel Peptide, Prevents SH-SY5Y Neuroblastoma Cells against Rotenone-induced Toxicity. Toxicity, Genotoxicity, and Carcinogenicity of Isotretinoin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1