Adaptive Clustering and Feature Selection for Categorical Time Series Using Interpretable Frequency-Domain Features.

Pub Date : 2023-01-01 Epub Date: 2023-04-13 DOI:10.4310/22-sii755
Scott A Bruce
{"title":"Adaptive Clustering and Feature Selection for Categorical Time Series Using Interpretable Frequency-Domain Features.","authors":"Scott A Bruce","doi":"10.4310/22-sii755","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents a novel approach to clustering and feature selection for categorical time series via interpretable frequency-domain features. A distance measure is introduced based on the spectral envelope and optimal scalings, which parsimoniously characterize prominent cyclical patterns in categorical time series. Using this distance, partitional clustering algorithms are introduced for accurately clustering categorical time series. These adaptive procedures offer simultaneous feature selection for identifying important features that distinguish clusters and fuzzy membership when time series exhibit similarities to multiple clusters. Clustering consistency of the proposed methods is investigated, and simulation studies are used to demonstrate clustering accuracy with various underlying group structures. The proposed methods are used to cluster sleep stage time series for sleep disorder patients in order to identify particular oscillatory patterns associated with sleep disruption.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/22-sii755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a novel approach to clustering and feature selection for categorical time series via interpretable frequency-domain features. A distance measure is introduced based on the spectral envelope and optimal scalings, which parsimoniously characterize prominent cyclical patterns in categorical time series. Using this distance, partitional clustering algorithms are introduced for accurately clustering categorical time series. These adaptive procedures offer simultaneous feature selection for identifying important features that distinguish clusters and fuzzy membership when time series exhibit similarities to multiple clusters. Clustering consistency of the proposed methods is investigated, and simulation studies are used to demonstrate clustering accuracy with various underlying group structures. The proposed methods are used to cluster sleep stage time series for sleep disorder patients in order to identify particular oscillatory patterns associated with sleep disruption.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
使用可解释的频域特征对分类时间序列进行自适应聚类和特征选择。
本文介绍了一种通过可解释频域特征对分类时间序列进行聚类和特征选择的新方法。文章介绍了一种基于频谱包络和最优标度的距离测量方法,它能简明地描述分类时间序列中突出的周期模式。利用这一距离,引入了分区聚类算法,对分类时间序列进行精确聚类。当时间序列表现出与多个聚类的相似性时,这些自适应程序可同时提供特征选择,以识别区分聚类的重要特征和模糊成员资格。对所提出方法的聚类一致性进行了研究,并利用模拟研究来证明各种基本组结构的聚类准确性。建议的方法用于对睡眠障碍患者的睡眠阶段时间序列进行聚类,以识别与睡眠中断相关的特殊振荡模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1