Farzaneh Zarghampoor, Behnaz Valibeigi, Abbas Behzad-Behbahani
{"title":"The molecular characteristics of colorectal cancer: Impact of Ibuprofen and hyperthermia.","authors":"Farzaneh Zarghampoor, Behnaz Valibeigi, Abbas Behzad-Behbahani","doi":"10.22099/mbrc.2023.45296.1802","DOIUrl":null,"url":null,"abstract":"<p><p>Despite various treatment options available for colorectal cancer, the survival rates for patients remain low. This study investigated the effects of hyperthermia and Ibuprofen on human colorectal adenocarcinoma cells (HT-29) viability, proliferation, and gene expression related to tumor suppression, Wnt signaling pathways, proliferation, and apoptosis The cells were exposed to hyperthermia at 42 or 43°C for 3 hours or Ibuprofen at different concentrations (700-1500 μM), and the effects were analyzed through MTT assay, trypan blue staining, and quantitative Real-time PCR. The study used quantitative Real-time PCR (qRT-PCR) to evaluate the effect of hyperthermia and Ibuprofen on the expression of various genes associated with tumor suppression, proliferation, Wnt signaling pathway, and apoptosis. The results revealed that hyperthermia caused a minor reduction in the viability and proliferation of HT-29 cells, but the decrease was not statistically significant (P<0.05). On the other hand, Ibuprofen caused a concentration-dependent decrease in the viability and proliferation of HT-29 cells. Both hyperthermia and Ibuprofen reduced the expression of <i>WNT1</i>, <i>CTNNB1</i>, <i>BCL2</i>, and <i>PCNA</i> genes, and increased the expression of <i>KLF4</i>, <i>P53</i>, and <i>BAX</i> genes. However, the changes in gene expression were not statistically significant in cells treated with hyperthermia. The findings suggest that Ibuprofen is more effective in reducing cancer cell proliferation by promoting apoptosis and inhibiting the Wnt signaling pathway than hyperthermia, which had some impact but was not statistically significant. The study highlights the potential of Ibuprofen as a targeted therapy for colorectal cancer.</p>","PeriodicalId":19025,"journal":{"name":"Molecular Biology Research Communications","volume":"12 1","pages":"17-25"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186857/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Research Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22099/mbrc.2023.45296.1802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite various treatment options available for colorectal cancer, the survival rates for patients remain low. This study investigated the effects of hyperthermia and Ibuprofen on human colorectal adenocarcinoma cells (HT-29) viability, proliferation, and gene expression related to tumor suppression, Wnt signaling pathways, proliferation, and apoptosis The cells were exposed to hyperthermia at 42 or 43°C for 3 hours or Ibuprofen at different concentrations (700-1500 μM), and the effects were analyzed through MTT assay, trypan blue staining, and quantitative Real-time PCR. The study used quantitative Real-time PCR (qRT-PCR) to evaluate the effect of hyperthermia and Ibuprofen on the expression of various genes associated with tumor suppression, proliferation, Wnt signaling pathway, and apoptosis. The results revealed that hyperthermia caused a minor reduction in the viability and proliferation of HT-29 cells, but the decrease was not statistically significant (P<0.05). On the other hand, Ibuprofen caused a concentration-dependent decrease in the viability and proliferation of HT-29 cells. Both hyperthermia and Ibuprofen reduced the expression of WNT1, CTNNB1, BCL2, and PCNA genes, and increased the expression of KLF4, P53, and BAX genes. However, the changes in gene expression were not statistically significant in cells treated with hyperthermia. The findings suggest that Ibuprofen is more effective in reducing cancer cell proliferation by promoting apoptosis and inhibiting the Wnt signaling pathway than hyperthermia, which had some impact but was not statistically significant. The study highlights the potential of Ibuprofen as a targeted therapy for colorectal cancer.
期刊介绍:
“Molecular Biology Research Communications” (MBRC) is an international journal of Molecular Biology. It is published quarterly by Shiraz University (Iran). The MBRC is a fully peer-reviewed journal. The journal welcomes submission of Original articles, Short communications, Invited review articles, and Letters to the Editor which meets the general criteria of significance and scientific excellence in all fields of “Molecular Biology”.