Antifungal Activity of Plant Secondary Metabolites on Candida albicans: An Updated Review.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Current molecular pharmacology Pub Date : 2023-01-01 DOI:10.2174/1874467215666220304143332
Andleeb Khan, Sivakumar Sivagurunathan Moni, M Ali, Syam Mohan, Huma Jan, Saiema Rasool, Mohammad A Kamal, Saeed Alshahrani, Maryam Halawi, Hassan A Alhazmi
{"title":"Antifungal Activity of Plant Secondary Metabolites on <i>Candida albicans</i>: An Updated Review.","authors":"Andleeb Khan,&nbsp;Sivakumar Sivagurunathan Moni,&nbsp;M Ali,&nbsp;Syam Mohan,&nbsp;Huma Jan,&nbsp;Saiema Rasool,&nbsp;Mohammad A Kamal,&nbsp;Saeed Alshahrani,&nbsp;Maryam Halawi,&nbsp;Hassan A Alhazmi","doi":"10.2174/1874467215666220304143332","DOIUrl":null,"url":null,"abstract":"<p><p>Fungal infections have been increasing continuously worldwide, especially in immunocompromised individuals. Fungi, regarded as eukaryotic pathogens, have many similarities to the host cells, which inhibit anti-fungal drug development progress. Various fungal model systems have been studied, and it was concluded that Candida spp. is the most common disease-causing fungus. Candida species are well known to cause infections not only in our mouth, skin, and vagina, but they are also a frequent cause of life-threatening hospital bloodstream infections. The morphological and developmental pathways of Candida have been studied extensively, providing insight into the fungus development. Candida albicans is known to be the most pathogenic species responsible for a variety of infections in humans. Conventional anti-fungal drugs, mainly azoles drugs available in the market, have been used for years developing resistance in C. albicans. Hence, the production of new anti-fungal drugs, which require detailed molecular knowledge of fungal pathogenesis, needs to be encouraged. Therefore, this review targets the new approach of \"Green Medicines\" or the phytochemicals and their secondary metabolites as a source of novel anti-fungal agents to overcome the drug resistance of C. albicans, their mechanism of action, and their combined effects with the available anti-fungal drugs.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular pharmacology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1874467215666220304143332","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Fungal infections have been increasing continuously worldwide, especially in immunocompromised individuals. Fungi, regarded as eukaryotic pathogens, have many similarities to the host cells, which inhibit anti-fungal drug development progress. Various fungal model systems have been studied, and it was concluded that Candida spp. is the most common disease-causing fungus. Candida species are well known to cause infections not only in our mouth, skin, and vagina, but they are also a frequent cause of life-threatening hospital bloodstream infections. The morphological and developmental pathways of Candida have been studied extensively, providing insight into the fungus development. Candida albicans is known to be the most pathogenic species responsible for a variety of infections in humans. Conventional anti-fungal drugs, mainly azoles drugs available in the market, have been used for years developing resistance in C. albicans. Hence, the production of new anti-fungal drugs, which require detailed molecular knowledge of fungal pathogenesis, needs to be encouraged. Therefore, this review targets the new approach of "Green Medicines" or the phytochemicals and their secondary metabolites as a source of novel anti-fungal agents to overcome the drug resistance of C. albicans, their mechanism of action, and their combined effects with the available anti-fungal drugs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物次生代谢物对白色念珠菌的抗真菌活性研究进展
真菌感染在世界范围内不断增加,特别是在免疫功能低下的个体中。真菌被认为是真核病原体,与宿主细胞有许多相似之处,这抑制了抗真菌药物的开发进展。人们对各种真菌模型系统进行了研究,认为念珠菌是最常见的致病真菌。众所周知,念珠菌不仅会引起口腔、皮肤和阴道的感染,而且也是危及生命的医院血液感染的常见原因。念珠菌的形态和发育途径已被广泛研究,为真菌的发育提供了新的思路。众所周知,白色念珠菌是导致人类多种感染的最具致病性的物种。传统的抗真菌药物,主要是市场上可用的唑类药物,多年来一直在白色念珠菌中产生耐药性。因此,需要鼓励生产新的抗真菌药物,这些药物需要详细了解真菌发病机制的分子知识。因此,本文就“绿色药物”或植物化学物质及其次生代谢物作为抗白色念珠菌耐药的新途径、作用机制及其与现有抗真菌药物的联合作用进行综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current molecular pharmacology
Current molecular pharmacology Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
4.90
自引率
3.70%
发文量
112
期刊介绍: Current Molecular Pharmacology aims to publish the latest developments in cellular and molecular pharmacology with a major emphasis on the mechanism of action of novel drugs under development, innovative pharmacological technologies, cell signaling, transduction pathway analysis, genomics, proteomics, and metabonomics applications to drug action. An additional focus will be the way in which normal biological function is illuminated by knowledge of the action of drugs at the cellular and molecular level. The journal publishes full-length/mini reviews, original research articles and thematic issues on molecular pharmacology. Current Molecular Pharmacology is an essential journal for every scientist who is involved in drug design and discovery, target identification, target validation, preclinical and clinical development of drugs therapeutically useful in human disease.
期刊最新文献
Anti-Cancer Role of Dendrosomal Nano Solanine in Chronic Myelogenous Leukemia Cell Line through Attenuation of PI3K/AKT/mTOR Signaling Pathway and Inhibition of hTERT Expression. Carvacrol as a Prospective Regulator of Cancer Targets/Signalling Pathways. Resveratrol Augments Doxorubicin and Cisplatin Chemotherapy: A Novel Therapeutic Strategy. PIASA, A Novel Peptide, Prevents SH-SY5Y Neuroblastoma Cells against Rotenone-induced Toxicity. Toxicity, Genotoxicity, and Carcinogenicity of Isotretinoin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1