A neural network approach to optimising treatments for depression using data from specialist and community psychiatric services in Australia, New Zealand and Japan.
Aidan Cousins, Lucas Nakano, Emma Schofield, Rasa Kabaila
{"title":"A neural network approach to optimising treatments for depression using data from specialist and community psychiatric services in Australia, New Zealand and Japan.","authors":"Aidan Cousins, Lucas Nakano, Emma Schofield, Rasa Kabaila","doi":"10.1007/s00521-021-06710-3","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the application of a recurrent neural network for optimising pharmacological treatment for depression. A clinical dataset of 458 participants from specialist and community psychiatric services in Australia, New Zealand and Japan were extracted from an existing custom-built, web-based tool called <i>Psynary</i> . This data, which included baseline and self-completed reviews, was used to train and refine a novel algorithm which was a fully connected network feature extractor and long short-term memory algorithm was firstly trained in isolation and then integrated and annealed using slow learning rates due to the low dimensionality of the data. The accuracy of predicting depression remission before processing patient review data was 49.8%. After processing only 2 reviews, the accuracy was 76.5%. When considering a change in medication, the precision of changing medications was 97.4% and the recall was 71.4% . The medications with predicted best results were antipsychotics (88%) and selective serotonin reuptake inhibitors (87.9%). <i>This is the first study that has created an all-in-one algorithm for optimising treatments for all subtypes of depression.</i> Reducing treatment optimisation time for patients suffering with depression may lead to earlier remission and hence reduce the high levels of disability associated with the condition. Furthermore, in a setting where mental health conditions are increasing strain on mental health services, the utilisation of web-based tools for remote monitoring and machine/deep learning algorithms may assist clinicians in both specialist and primary care in extending specialist mental healthcare to a larger patient community.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 16","pages":"11497-11516"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754538/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-021-06710-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
This study investigated the application of a recurrent neural network for optimising pharmacological treatment for depression. A clinical dataset of 458 participants from specialist and community psychiatric services in Australia, New Zealand and Japan were extracted from an existing custom-built, web-based tool called Psynary . This data, which included baseline and self-completed reviews, was used to train and refine a novel algorithm which was a fully connected network feature extractor and long short-term memory algorithm was firstly trained in isolation and then integrated and annealed using slow learning rates due to the low dimensionality of the data. The accuracy of predicting depression remission before processing patient review data was 49.8%. After processing only 2 reviews, the accuracy was 76.5%. When considering a change in medication, the precision of changing medications was 97.4% and the recall was 71.4% . The medications with predicted best results were antipsychotics (88%) and selective serotonin reuptake inhibitors (87.9%). This is the first study that has created an all-in-one algorithm for optimising treatments for all subtypes of depression. Reducing treatment optimisation time for patients suffering with depression may lead to earlier remission and hence reduce the high levels of disability associated with the condition. Furthermore, in a setting where mental health conditions are increasing strain on mental health services, the utilisation of web-based tools for remote monitoring and machine/deep learning algorithms may assist clinicians in both specialist and primary care in extending specialist mental healthcare to a larger patient community.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.