Comparison of Ahiflower oil containing stearidonic acid to a high-alpha-linolenic acid flaxseed oil at two dietary levels on omega-3 enrichment of egg yolk and tissues in laying hens
Ahmed S. A. El-Zenary, Robert G. Elkin, Kevin J. Harvatine
{"title":"Comparison of Ahiflower oil containing stearidonic acid to a high-alpha-linolenic acid flaxseed oil at two dietary levels on omega-3 enrichment of egg yolk and tissues in laying hens","authors":"Ahmed S. A. El-Zenary, Robert G. Elkin, Kevin J. Harvatine","doi":"10.1002/lipd.12370","DOIUrl":null,"url":null,"abstract":"<p>Enrichment of egg yolks with very long chain omega-3 fatty acids (VLCn-3 FA) is of interest because of their beneficial effects on human health. The ability of Ahiflower® oil (AHI; <i>Buglossoides arvensis</i>), which is naturally rich in stearidonic acid (SDA), and a high-alpha-linolenic acid (ALA) flaxseed (FLAX) oil to enrich eggs and tissues of laying hens with VLCn-3 FA was investigated. Forty 54-week-old Hy-Line W-36 White Leghorn hens were fed a diet that contained soybean oil (control; CON) or AHI or FLAX oils at 7.5 or 22.5 g/kg of the diet in substitution for the soybean oil for 28 days. Dietary treatments had no effects on egg number or components or follicle development. Total VLCn-3 FA contents of egg yolk, liver, breast, thigh, and adipose tissue were greater in the n-3 treatments compared to CON, with the greatest increase observed at the higher oil level, especially for AHI oil which had the greater VLCn-3 enrichment than FLAX in yolk (<i>p</i> < 0.001). Efficiency of VLCn-3 enrichment of egg yolks was decreased with n-3 oils and by increasing oil level with lowest efficiency at 22.5 g/kg FLAX. In conclusion, both SDA-rich (AHI) and ALA-rich (FLAX) oils increased VLCn-3 FA deposition into egg yolks and hens' tissues, but dietary AHI oil promoted a greater enrichment than comparative amounts of FLAX oil, especially in liver and egg yolks.</p>","PeriodicalId":18086,"journal":{"name":"Lipids","volume":"58 3","pages":"139-155"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lipd.12370","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lipd.12370","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Enrichment of egg yolks with very long chain omega-3 fatty acids (VLCn-3 FA) is of interest because of their beneficial effects on human health. The ability of Ahiflower® oil (AHI; Buglossoides arvensis), which is naturally rich in stearidonic acid (SDA), and a high-alpha-linolenic acid (ALA) flaxseed (FLAX) oil to enrich eggs and tissues of laying hens with VLCn-3 FA was investigated. Forty 54-week-old Hy-Line W-36 White Leghorn hens were fed a diet that contained soybean oil (control; CON) or AHI or FLAX oils at 7.5 or 22.5 g/kg of the diet in substitution for the soybean oil for 28 days. Dietary treatments had no effects on egg number or components or follicle development. Total VLCn-3 FA contents of egg yolk, liver, breast, thigh, and adipose tissue were greater in the n-3 treatments compared to CON, with the greatest increase observed at the higher oil level, especially for AHI oil which had the greater VLCn-3 enrichment than FLAX in yolk (p < 0.001). Efficiency of VLCn-3 enrichment of egg yolks was decreased with n-3 oils and by increasing oil level with lowest efficiency at 22.5 g/kg FLAX. In conclusion, both SDA-rich (AHI) and ALA-rich (FLAX) oils increased VLCn-3 FA deposition into egg yolks and hens' tissues, but dietary AHI oil promoted a greater enrichment than comparative amounts of FLAX oil, especially in liver and egg yolks.
期刊介绍:
Lipids is a journal of the American Oil Chemists'' Society (AOCS) that focuses on publishing high-quality peer-reviewed papers and invited reviews in the general area of lipid research, including chemistry, biochemistry, clinical nutrition, and metabolism. In addition, Lipids publishes papers establishing novel methods for addressing research questions in the field of lipid research.