The Presence of Two MyoD Genes in a Subset of Acanthopterygii Fish Is Associated with a Polyserine Insert in MyoD1.

IF 2.2 Q3 DEVELOPMENTAL BIOLOGY Journal of Developmental Biology Pub Date : 2023-04-28 DOI:10.3390/jdb11020019
Lewis J White, Alexander J Russell, Alastair R Pizzey, Kanchon K Dasmahapatra, Mary E Pownall
{"title":"The Presence of Two <i>MyoD</i> Genes in a Subset of Acanthopterygii Fish Is Associated with a Polyserine Insert in MyoD1.","authors":"Lewis J White,&nbsp;Alexander J Russell,&nbsp;Alastair R Pizzey,&nbsp;Kanchon K Dasmahapatra,&nbsp;Mary E Pownall","doi":"10.3390/jdb11020019","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>MyoD</i> gene was duplicated during the teleost whole genome duplication and, while a second <i>MyoD</i> gene (<i>MyoD2</i>) was subsequently lost from the genomes of some lineages (including zebrafish), many fish lineages (including <i>Alcolapia</i> species) have retained both <i>MyoD</i> paralogues. Here we reveal the expression patterns of the two <i>MyoD</i> genes in <i>Oreochromis</i> (<i>Alcolapia) alcalica</i> using in situ hybridisation. We report our analysis of MyoD1 and MyoD2 protein sequences from 54 teleost species, and show that <i>O. alcalica</i>, along with some other teleosts, include a polyserine repeat between the amino terminal transactivation domains (TAD) and the cysteine-histidine rich region (H/C) in MyoD1. The evolutionary history of <i>MyoD1</i> and <i>MyoD2</i> is compared to the presence of this polyserine region using phylogenetics, and its functional relevance is tested using overexpression in a heterologous system to investigate subcellular localisation, stability, and activity of MyoD proteins that include and do not include the polyserine region.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"11 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204381/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb11020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The MyoD gene was duplicated during the teleost whole genome duplication and, while a second MyoD gene (MyoD2) was subsequently lost from the genomes of some lineages (including zebrafish), many fish lineages (including Alcolapia species) have retained both MyoD paralogues. Here we reveal the expression patterns of the two MyoD genes in Oreochromis (Alcolapia) alcalica using in situ hybridisation. We report our analysis of MyoD1 and MyoD2 protein sequences from 54 teleost species, and show that O. alcalica, along with some other teleosts, include a polyserine repeat between the amino terminal transactivation domains (TAD) and the cysteine-histidine rich region (H/C) in MyoD1. The evolutionary history of MyoD1 and MyoD2 is compared to the presence of this polyserine region using phylogenetics, and its functional relevance is tested using overexpression in a heterologous system to investigate subcellular localisation, stability, and activity of MyoD proteins that include and do not include the polyserine region.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
棘鳍鱼MyoD1中存在两个MyoD基因与多丝氨酸插入有关。
MyoD基因在硬骨鱼全基因组复制过程中被复制,虽然第二个MyoD基因(MyoD2)随后从一些谱系(包括斑马鱼)的基因组中丢失,但许多鱼类谱系(包括Alcolapia物种)保留了两个MyoD同源物。本研究利用原位杂交技术,揭示了这两个MyoD基因在嗜酸盐(Oreochromis)中的表达模式。我们对54种硬骨鱼MyoD1和MyoD2蛋白序列进行了分析,发现O. alcalica和其他硬骨鱼在MyoD1的氨基末端反激活域(TAD)和富含半胱氨酸-组氨酸的区域(H/C)之间包含一个多丝氨酸重复序列。使用系统遗传学将MyoD1和MyoD2的进化史与该多丝氨酸区域的存在进行了比较,并使用异源系统中的过表达来测试其功能相关性,以研究MyoD蛋白(包括和不包括多丝氨酸区域)的亚细胞定位、稳定性和活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Developmental Biology
Journal of Developmental Biology Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
4.10
自引率
18.50%
发文量
44
审稿时长
11 weeks
期刊介绍: The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.
期刊最新文献
Transcriptomic Evidence for Cell-Autonomous Sex Differentiation of the Gynandromorphic Fat Body in the Silkworm, Bombyx mori. Methyl-Beta-Cyclodextrin Restores Aberrant Bone Morphogenetic Protein 2-Signaling in Bone Marrow Stromal Cells Obtained from Aged C57BL/6 Mice. Prosaposin/Saposin Expression in the Developing Rat Olfactory and Vomeronasal Epithelia. How the Oocyte Nucleolus Is Turned into a Karyosphere: The Role of Heterochromatin and Structural Proteins. Neural Circuit Remodeling: Mechanistic Insights from Invertebrates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1