Protective effects of butylated hydroxytoluene on the initiation of N-nitrosodiethylamine-induced hepatocellular carcinoma in albino rats.

IF 2.7 4区 医学 Q3 TOXICOLOGY Human & Experimental Toxicology Pub Date : 2023-01-01 DOI:10.1177/09603271231165664
Sally A Fahim, Samar Ibrahim, Samer A Tadros, Osama A Badary
{"title":"Protective effects of butylated hydroxytoluene on the initiation of N-nitrosodiethylamine-induced hepatocellular carcinoma in albino rats.","authors":"Sally A Fahim,&nbsp;Samar Ibrahim,&nbsp;Samer A Tadros,&nbsp;Osama A Badary","doi":"10.1177/09603271231165664","DOIUrl":null,"url":null,"abstract":"<p><p>Diethylnitrosamine (DEN), a hepatocarcinogen, is found in a variety of smoked and fried foods and was reported to be hepatotoxic in mice. Butylated hydroxytoluene (BHT) is a potent antioxidant used in cosmetic formulations and as a food additive and preservative. As a result, BHT was studied as a potential inhibitor in the early stages of diethylnitrosamine (DEN)-induced HCC. Male Wistar albino rats (<i>n</i> = 24) were equally subdivided. Group 1 was the negative control; Group 2 and 3 administered BHT and DEN, respectively; Group 4 received BHT followed by DEN. Blood samples and rat livers were taken for biochemical and histological investigation. Hepatotoxicity was assessed by increased liver enzymes and HCC indicators, along with reduced antioxidant and pro-apoptotic factors. AFP, AFPL3, GPC3, GSH, SOD, MDA, CASP3 and BAX expression increased significantly after DEN treatment. DEN also reduced GPx, CAT, and CYP2E1 activity, and BCl-2 expression. Moreover, in the hepatic parenchyma, the DEN caused histological alterations. Pretreatment with BHT enhanced antioxidant status while preventing histopathological and most biochemical alterations. BHT pretreatment suppresses DEN-initiated HCC by decreasing oxidative stress, triggering intrinsic mitotic apoptosis, and preventing histopathological changes in liver tissue.</p>","PeriodicalId":13181,"journal":{"name":"Human & Experimental Toxicology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & Experimental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09603271231165664","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Diethylnitrosamine (DEN), a hepatocarcinogen, is found in a variety of smoked and fried foods and was reported to be hepatotoxic in mice. Butylated hydroxytoluene (BHT) is a potent antioxidant used in cosmetic formulations and as a food additive and preservative. As a result, BHT was studied as a potential inhibitor in the early stages of diethylnitrosamine (DEN)-induced HCC. Male Wistar albino rats (n = 24) were equally subdivided. Group 1 was the negative control; Group 2 and 3 administered BHT and DEN, respectively; Group 4 received BHT followed by DEN. Blood samples and rat livers were taken for biochemical and histological investigation. Hepatotoxicity was assessed by increased liver enzymes and HCC indicators, along with reduced antioxidant and pro-apoptotic factors. AFP, AFPL3, GPC3, GSH, SOD, MDA, CASP3 and BAX expression increased significantly after DEN treatment. DEN also reduced GPx, CAT, and CYP2E1 activity, and BCl-2 expression. Moreover, in the hepatic parenchyma, the DEN caused histological alterations. Pretreatment with BHT enhanced antioxidant status while preventing histopathological and most biochemical alterations. BHT pretreatment suppresses DEN-initiated HCC by decreasing oxidative stress, triggering intrinsic mitotic apoptosis, and preventing histopathological changes in liver tissue.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丁基羟基甲苯对n -亚硝基二乙胺诱导的白化大鼠肝细胞癌的保护作用。
二乙基亚硝胺(DEN)是一种肝癌致癌物,存在于各种烟熏和油炸食品中,据报道对小鼠有肝毒性。丁基羟基甲苯(BHT)是一种有效的抗氧化剂,用于化妆品配方和作为食品添加剂和防腐剂。因此,BHT被研究为二乙基亚硝胺(DEN)诱导的HCC早期阶段的潜在抑制剂。雄性Wistar白化大鼠(n = 24)同样细分。组1为阴性对照;2组和3组分别给予BHT和DEN;第4组先行BHT,后行DEN。取大鼠血液和肝脏进行生化和组织学检查。肝毒性通过肝酶和HCC指标升高,以及抗氧化和促凋亡因子降低来评估。DEN处理后,AFP、AFPL3、GPC3、GSH、SOD、MDA、CASP3、BAX的表达均显著升高。DEN还降低了GPx、CAT和CYP2E1活性以及BCl-2的表达。此外,在肝实质中,DEN引起组织学改变。预处理BHT增强抗氧化状态,同时防止组织病理学和大多数生化改变。BHT预处理通过降低氧化应激、触发内在有丝分裂细胞凋亡和防止肝组织的组织病理学改变来抑制den启动的HCC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
3.60%
发文量
128
审稿时长
2.3 months
期刊介绍: Human and Experimental Toxicology (HET), an international peer reviewed journal, is dedicated to publishing preclinical and clinical original research papers and in-depth reviews that comprehensively cover studies of functional, biochemical and structural disorders in toxicology. The principal aim of the HET is to publish timely high impact hypothesis driven scholarly work with an international scope. The journal publishes on: Structural, functional, biochemical, and molecular effects of toxic agents; Studies that address mechanisms/modes of toxicity; Safety evaluation of novel chemical, biotechnologically-derived products, and nanomaterials for human health assessment including statistical and mechanism-based approaches; Novel methods or approaches to research on animal and human tissues (medical and veterinary patients) investigating functional, biochemical and structural disorder; in vitro techniques, particularly those supporting alternative methods
期刊最新文献
CircRNA_001373 promotes liver fibrosis by regulating autophagy activation in hepatic stellate cells via the miR-142a-5p/Becn1 axis Sulforaphane triggers Sirtuin 3-mediated ferroptosis in colorectal cancer cells via activating the adenosine 5‘-monophosphate (AMP)-activated protein kinase/ mechanistic target of rapamycin signaling pathway Ergot alkaloid consumption alters serotonin receptor-induced vasoactivity in ovine umbilical vasculature Expression of PVT-1 and miR-29a/29b as reliable biomarkers for liver cirrhosis and their correlation with the inflammatory biomarkers profile. Baicalein exerts beneficial effects in lipopolysaccharide-induced pulmonary inflammation by modulating macrophage polarization and inhibiting pyroptosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1