Full-length versus truncated α-factor secretory signal sequences for expression of recombinant human insulin precursor in yeast Pichia pastoris: a comparison.

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal, genetic engineering & biotechnology Pub Date : 2023-05-22 DOI:10.1186/s43141-023-00521-w
Nuruliawaty Utami, Dini Nurdiani, Hariyatun Hariyatun, Eko Wahyu Putro, Fadillah Putri Patria, Wien Kusharyoto
{"title":"Full-length versus truncated α-factor secretory signal sequences for expression of recombinant human insulin precursor in yeast Pichia pastoris: a comparison.","authors":"Nuruliawaty Utami, Dini Nurdiani, Hariyatun Hariyatun, Eko Wahyu Putro, Fadillah Putri Patria, Wien Kusharyoto","doi":"10.1186/s43141-023-00521-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Human insulin was the first FDA-approved biopharmaceutical drug produced through recombinant DNA technology. The previous studies successfully expressed recombinant human insulin precursors (HIP) in Pichia pastoris truncated and full-length α-factor recombinant clones. The matting α-factor (Matα), a signal secretion, direct the HIP protein into the culture media. This study aimed to compare the HIP expression from full-length and truncated α-factor secretory signals clones that grown in two types of media, buffered methanol complex medium (BMMY) and methanol basal salt medium (BSMM).</p><p><strong>Results: </strong>ImageJ analysis of the HIP's SDS-PAGE shows that the average HIP expression level of the recombinant P. pastoris truncated α-factor clone (CL4) was significantly higher compared to the full-length (HF7) when expressed in both media. Western blot analysis showed that the expressed protein was the HIP. The α-factor protein structure was predicted using the AlphaFold and visualized using UCSF ChimeraX to confirm the secretion ability for both clones.</p><p><strong>Conclusions: </strong>CL4 clone, which utilized a truncated α-factor in the P. pastoris HIP expression cassette, significantly expressed HIP 8.97 times (in BMMY) and 1.17 times (in BSMM) higher than HF7 clone, which used a full-length α-factor secretory signal. This research confirmed that deletion of some regions of the secretory signal sequence significantly improved the efficiency of HIP protein expression in P. pastoris.</p>","PeriodicalId":74026,"journal":{"name":"Journal, genetic engineering & biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203085/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal, genetic engineering & biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43141-023-00521-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Human insulin was the first FDA-approved biopharmaceutical drug produced through recombinant DNA technology. The previous studies successfully expressed recombinant human insulin precursors (HIP) in Pichia pastoris truncated and full-length α-factor recombinant clones. The matting α-factor (Matα), a signal secretion, direct the HIP protein into the culture media. This study aimed to compare the HIP expression from full-length and truncated α-factor secretory signals clones that grown in two types of media, buffered methanol complex medium (BMMY) and methanol basal salt medium (BSMM).

Results: ImageJ analysis of the HIP's SDS-PAGE shows that the average HIP expression level of the recombinant P. pastoris truncated α-factor clone (CL4) was significantly higher compared to the full-length (HF7) when expressed in both media. Western blot analysis showed that the expressed protein was the HIP. The α-factor protein structure was predicted using the AlphaFold and visualized using UCSF ChimeraX to confirm the secretion ability for both clones.

Conclusions: CL4 clone, which utilized a truncated α-factor in the P. pastoris HIP expression cassette, significantly expressed HIP 8.97 times (in BMMY) and 1.17 times (in BSMM) higher than HF7 clone, which used a full-length α-factor secretory signal. This research confirmed that deletion of some regions of the secretory signal sequence significantly improved the efficiency of HIP protein expression in P. pastoris.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在酵母 Pichia pastoris 中表达重组人胰岛素前体的全长与截短 α-因子分泌信号序列:比较。
背景:人胰岛素是美国食品和药物管理局批准的第一种通过 DNA 重组技术生产的生物制药药物。之前的研究成功地在 Pichia pastoris 中表达了重组人胰岛素前体(HIP)的截短和全长 α-因子重组克隆。Matting α-因子(Matα)是一种信号分泌物,可引导 HIP 蛋白进入培养基。本研究旨在比较在两种培养基(缓冲甲醇复合培养基(BMMY)和甲醇基础盐培养基(BSMM))中生长的全长和截短α-因子分泌信号克隆的HIP表达情况:ImageJ对HIP的SDS-PAGE分析表明,重组牧马人截短α-因子克隆(CL4)在两种培养基中表达的HIP平均表达水平明显高于全长(HF7)。Western 印迹分析表明,表达的蛋白是 HIP。使用 AlphaFold 预测了α-因子蛋白的结构,并使用 UCSF ChimeraX 进行了可视化,以确认两个克隆的分泌能力:结论:CL4克隆在P. pastoris HIP表达盒中使用了截短的α-因子,其HIP表达量是使用全长α-因子分泌信号的HF7克隆的8.97倍(在BMMY中)和1.17倍(在BSMM中)。这项研究证实,删除分泌信号序列的某些区域可显著提高牧杆菌中 HIP 蛋白的表达效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physiochemical analyses and molecular characterization of heavy metal-resistant bacteria from Ilesha gold mining sites in Nigeria. Whole genome sequence and comparative genomics analysis of multidrug-resistant Staphylococcus xylosus NM36 isolated from a cow with mastitis in Basrah city. Immunoinformatics-aided rational design of multiepitope-based peptide vaccine (MEBV) targeting human parainfluenza virus 3 (HPIV-3) stable proteins. Isolation of plant growth-promoting rhizobacteria from the agricultural fields of Tattiannaram, Telangana. Short tandem repeat (STR) variation from 6 cities in Iraq based on 15 loci.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1