Anna Terrazzan, Francesca Crudele, Fabio Corrà, Pietro Ancona, Jeffrey Palatini, Nicoletta Bianchi, Stefano Volinia
{"title":"Inverse Impact of Cancer Drugs on Circular and Linear RNAs in Breast Cancer Cell Lines.","authors":"Anna Terrazzan, Francesca Crudele, Fabio Corrà, Pietro Ancona, Jeffrey Palatini, Nicoletta Bianchi, Stefano Volinia","doi":"10.3390/ncrna9030032","DOIUrl":null,"url":null,"abstract":"<p><p>Altered expression of circular RNAs (circRNAs) has previously been investigated in breast cancer. However, little is known about the effects of drugs on their regulation and relationship with the cognate linear transcript (linRNA). We analyzed the dysregulation of both 12 cancer-related circRNAs and their linRNAs in two breast cancer cell lines undergoing various treatments. We selected 14 well-known anticancer agents affecting different cellular pathways and examined their impact. Upon drug exposure circRNA/linRNA expression ratios increased, as a result of the downregulation of linRNA and upregulation of circRNA within the same gene. In this study, we highlighted the relevance of identifying the drug-regulated circ/linRNAs according to their oncogenic or anticancer role. Interestingly, <i>VRK1</i> and <i>MAN1A2</i> were increased by several drugs in both cell lines. However, they display opposite effects, circ/linVRK1 favors apoptosis whereas circ/linMAN1A2 stimulates cell migration, and only XL765 did not alter the ratio of other dangerous circ/linRNAs in MCF-7. In MDA-MB-231 cells, AMG511 and GSK1070916 decreased circGFRA1, as a good response to drugs. Furthermore, some circRNAs might be associated with specific mutated pathways, such as the PI3K/AKT in MCF-7 cells with circ/linHIPK3 correlating to cancer progression and drug-resistance, or NHEJ DNA repair pathway in TP-53 mutated MDA-MB-231 cells.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"9 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204552/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna9030032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Altered expression of circular RNAs (circRNAs) has previously been investigated in breast cancer. However, little is known about the effects of drugs on their regulation and relationship with the cognate linear transcript (linRNA). We analyzed the dysregulation of both 12 cancer-related circRNAs and their linRNAs in two breast cancer cell lines undergoing various treatments. We selected 14 well-known anticancer agents affecting different cellular pathways and examined their impact. Upon drug exposure circRNA/linRNA expression ratios increased, as a result of the downregulation of linRNA and upregulation of circRNA within the same gene. In this study, we highlighted the relevance of identifying the drug-regulated circ/linRNAs according to their oncogenic or anticancer role. Interestingly, VRK1 and MAN1A2 were increased by several drugs in both cell lines. However, they display opposite effects, circ/linVRK1 favors apoptosis whereas circ/linMAN1A2 stimulates cell migration, and only XL765 did not alter the ratio of other dangerous circ/linRNAs in MCF-7. In MDA-MB-231 cells, AMG511 and GSK1070916 decreased circGFRA1, as a good response to drugs. Furthermore, some circRNAs might be associated with specific mutated pathways, such as the PI3K/AKT in MCF-7 cells with circ/linHIPK3 correlating to cancer progression and drug-resistance, or NHEJ DNA repair pathway in TP-53 mutated MDA-MB-231 cells.
Non-Coding RNABiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍:
Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.