Suene Moçato Siguematsu Abrão, Danielle Gregorio, Monalisa Kethleen Costa De Azevedo, Graziela Garrido Mori, Regina Célia Poli-Frederico, Luciana Prado Maia
{"title":"Cytotoxicity and genotoxicity of Bio-C Repair, Endosequence BC Root Repair, MTA Angelus and MTA Repair HP.","authors":"Suene Moçato Siguematsu Abrão, Danielle Gregorio, Monalisa Kethleen Costa De Azevedo, Graziela Garrido Mori, Regina Célia Poli-Frederico, Luciana Prado Maia","doi":"10.1590/0103-6440202305047","DOIUrl":null,"url":null,"abstract":"<p><p>The aim was to evaluate in vitro cytotoxicity and genotoxicity of Bio-C Repair (BCR), compared to Endosequence BC Root Repair (ERRM), MTA Angelus (MTA-Ang), and MTA Repair HP (MTA-HP). MC3T3 osteoblastic cells were exposed to extracts of the repairing bioceramic cements. After 1, 3, and 7 days, cytotoxicity and genotoxicity were evaluated by MTT and Micronucleus tests, respectively. Cells not exposed to biomaterials were used as a negative control. Data were compared using ANOVA two-way, followed by the Tukey Test (α=5%). MTA-Ang and MTA-HP showed no difference in relation to control regarding cytotoxicity in any experimental times. BCR and ERRM reduced cell viability after 3 and 7 days (p<0.05); however, the reduction caused by BCR was less than that caused by ERRM. Considering the micronucleus formation, all biomaterials caused an increase after 3 and 7 days (p<0.05), being greater for the BCR and ERRM groups. It can be concluded that BCR is non-cytotoxic in osteoblastic cells, as well as MTA-Ang e MTA Repair HP. BCR and ERRM showed greater genotoxicity than others tested biomaterials.</p>","PeriodicalId":9211,"journal":{"name":"Brazilian dental journal","volume":"34 2","pages":"14-20"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208289/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian dental journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0103-6440202305047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The aim was to evaluate in vitro cytotoxicity and genotoxicity of Bio-C Repair (BCR), compared to Endosequence BC Root Repair (ERRM), MTA Angelus (MTA-Ang), and MTA Repair HP (MTA-HP). MC3T3 osteoblastic cells were exposed to extracts of the repairing bioceramic cements. After 1, 3, and 7 days, cytotoxicity and genotoxicity were evaluated by MTT and Micronucleus tests, respectively. Cells not exposed to biomaterials were used as a negative control. Data were compared using ANOVA two-way, followed by the Tukey Test (α=5%). MTA-Ang and MTA-HP showed no difference in relation to control regarding cytotoxicity in any experimental times. BCR and ERRM reduced cell viability after 3 and 7 days (p<0.05); however, the reduction caused by BCR was less than that caused by ERRM. Considering the micronucleus formation, all biomaterials caused an increase after 3 and 7 days (p<0.05), being greater for the BCR and ERRM groups. It can be concluded that BCR is non-cytotoxic in osteoblastic cells, as well as MTA-Ang e MTA Repair HP. BCR and ERRM showed greater genotoxicity than others tested biomaterials.
期刊介绍:
Brazilian Dental Journal, publishes Full-Length Papers, Short Communications and Case Reports, dealing with dentistry or related disciplines and edited six times a year.