Yuanzhi Yu, Roderick J Little, Matthew Perzanowski, Qixuan Chen
{"title":"Multiple imputation of more than one environmental exposure with nondifferential measurement error.","authors":"Yuanzhi Yu, Roderick J Little, Matthew Perzanowski, Qixuan Chen","doi":"10.1093/biostatistics/kxad011","DOIUrl":null,"url":null,"abstract":"<p><p>Measurement error is common in environmental epidemiologic studies, but methods for correcting measurement error in regression models with multiple environmental exposures as covariates have not been well investigated. We consider a multiple imputation approach, combining external or internal calibration samples that contain information on both true and error-prone exposures with the main study data of multiple exposures measured with error. We propose a constrained chained equations multiple imputation (CEMI) algorithm that places constraints on the imputation model parameters in the chained equations imputation based on the assumptions of strong nondifferential measurement error. We also extend the constrained CEMI method to accommodate nondetects in the error-prone exposures in the main study data. We estimate the variance of the regression coefficients using the bootstrap with two imputations of each bootstrapped sample. The constrained CEMI method is shown by simulations to outperform existing methods, namely the method that ignores measurement error, classical calibration, and regression prediction, yielding estimated regression coefficients with smaller bias and confidence intervals with coverage close to the nominal level. We apply the proposed method to the Neighborhood Asthma and Allergy Study to investigate the associations between the concentrations of multiple indoor allergens and the fractional exhaled nitric oxide level among asthmatic children in New York City. The constrained CEMI method can be implemented by imposing constraints on the imputation matrix using the mice and bootImpute packages in R.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017114/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad011","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Measurement error is common in environmental epidemiologic studies, but methods for correcting measurement error in regression models with multiple environmental exposures as covariates have not been well investigated. We consider a multiple imputation approach, combining external or internal calibration samples that contain information on both true and error-prone exposures with the main study data of multiple exposures measured with error. We propose a constrained chained equations multiple imputation (CEMI) algorithm that places constraints on the imputation model parameters in the chained equations imputation based on the assumptions of strong nondifferential measurement error. We also extend the constrained CEMI method to accommodate nondetects in the error-prone exposures in the main study data. We estimate the variance of the regression coefficients using the bootstrap with two imputations of each bootstrapped sample. The constrained CEMI method is shown by simulations to outperform existing methods, namely the method that ignores measurement error, classical calibration, and regression prediction, yielding estimated regression coefficients with smaller bias and confidence intervals with coverage close to the nominal level. We apply the proposed method to the Neighborhood Asthma and Allergy Study to investigate the associations between the concentrations of multiple indoor allergens and the fractional exhaled nitric oxide level among asthmatic children in New York City. The constrained CEMI method can be implemented by imposing constraints on the imputation matrix using the mice and bootImpute packages in R.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.