{"title":"Naringenin ameliorates aluminum toxicity-induced testicular dysfunctions in mice by suppressing oxidative stress and histopathological alterations.","authors":"Ravina Rai, Deepali Jat, Siddhartha Kumar Mishra","doi":"10.1080/19396368.2023.2203794","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental aluminum intoxication has shown increasingly alarming negative consequences on reproductive health. This needs mechanistic exploration and preventive management using medicines like herbal supplementation. The ameliorative effects of naringenin (NAR) against AlCl<sub>3</sub>-induced reproductive toxicity were thus evaluated in this study by assessing testicular dysfunction in albino male mice. A group of mice was treated with AlCl<sub>3</sub> (10 mg/kg b.w./day) and then with NAR (10 mg/kg b.w./day) for a total of sixty-two days. Results show that treatment of AlCl<sub>3</sub> significantly reduced the body weight and testis weight of mice. AlCl<sub>3</sub> caused oxidative damage in mice as evidenced by an increase in the concentration of nitric oxide, advanced oxidation of protein product, protein carbonylation, and lipid peroxidation. Furthermore, diminished activity of antioxidant moieties included superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, reduced glutathione, and oxidized glutathione. Several histological changes, such as spermatogenic cell degeneration, germinal epithelium detachment, and structural abnormalities in seminiferous tubules, were observed in AlCl<sub>3</sub>-treated mice. Oral administration of NAR was found to restore body weight and testes weight and ameliorated reproductive dysfunctions. NAR decreased oxidative stress, replenished the antioxidant defense system, and improved histopathological alterations in the AlCl<sub>3</sub>-treated testes. Therefore, the present study suggests that the supplementation of NAR may be a beneficial strategy to mitigate AlCl<sub>3</sub>-induced reproductive toxicity and testicular dysfunction.</p>","PeriodicalId":22184,"journal":{"name":"Systems Biology in Reproductive Medicine","volume":" ","pages":"347-353"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Biology in Reproductive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19396368.2023.2203794","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Environmental aluminum intoxication has shown increasingly alarming negative consequences on reproductive health. This needs mechanistic exploration and preventive management using medicines like herbal supplementation. The ameliorative effects of naringenin (NAR) against AlCl3-induced reproductive toxicity were thus evaluated in this study by assessing testicular dysfunction in albino male mice. A group of mice was treated with AlCl3 (10 mg/kg b.w./day) and then with NAR (10 mg/kg b.w./day) for a total of sixty-two days. Results show that treatment of AlCl3 significantly reduced the body weight and testis weight of mice. AlCl3 caused oxidative damage in mice as evidenced by an increase in the concentration of nitric oxide, advanced oxidation of protein product, protein carbonylation, and lipid peroxidation. Furthermore, diminished activity of antioxidant moieties included superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, reduced glutathione, and oxidized glutathione. Several histological changes, such as spermatogenic cell degeneration, germinal epithelium detachment, and structural abnormalities in seminiferous tubules, were observed in AlCl3-treated mice. Oral administration of NAR was found to restore body weight and testes weight and ameliorated reproductive dysfunctions. NAR decreased oxidative stress, replenished the antioxidant defense system, and improved histopathological alterations in the AlCl3-treated testes. Therefore, the present study suggests that the supplementation of NAR may be a beneficial strategy to mitigate AlCl3-induced reproductive toxicity and testicular dysfunction.
期刊介绍:
Systems Biology in Reproductive Medicine, SBiRM, publishes Research Articles, Communications, Applications Notes that include protocols a Clinical Corner that includes case reports, Review Articles and Hypotheses and Letters to the Editor on human and animal reproduction. The journal will highlight the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatic, molecular, and biochemical, to address fundamental questions in reproductive biology, reproductive medicine, and translational research. The journal publishes research involving human and animal gametes, stem cells, developmental biology and toxicology, and clinical care in reproductive medicine. Specific areas of interest to the journal include: male factor infertility and germ cell biology, reproductive technologies (gamete micro-manipulation and cryopreservation, in vitro fertilization/embryo transfer (IVF/ET) and contraception. Research that is directed towards developing new or enhanced technologies for clinical medicine or scientific research in reproduction is of significant interest to the journal.