Combining Higher-Order Logic with Set Theory Formalizations.

IF 0.9 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Automated Reasoning Pub Date : 2023-01-01 Epub Date: 2023-05-25 DOI:10.1007/s10817-023-09663-5
Cezary Kaliszyk, Karol Pąk
{"title":"Combining Higher-Order Logic with Set Theory Formalizations.","authors":"Cezary Kaliszyk,&nbsp;Karol Pąk","doi":"10.1007/s10817-023-09663-5","DOIUrl":null,"url":null,"abstract":"<p><p>The Isabelle Higher-order Tarski-Grothendieck object logic includes in its foundations both higher-order logic and set theory, which allows importing the libraries of Isabelle/HOL and Isabelle/Mizar. The two libraries, however, define all the basic concepts independently, which means that the results in the two are disconnected. In this paper, we align significant parts of these two libraries, by defining isomorphisms between their concepts, including the real numbers and algebraic structures. The isomorphisms allow us to transport theorems between the foundations and use the results from the libraries simultaneously.</p>","PeriodicalId":15082,"journal":{"name":"Journal of Automated Reasoning","volume":"67 2","pages":"20"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automated Reasoning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10817-023-09663-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Isabelle Higher-order Tarski-Grothendieck object logic includes in its foundations both higher-order logic and set theory, which allows importing the libraries of Isabelle/HOL and Isabelle/Mizar. The two libraries, however, define all the basic concepts independently, which means that the results in the two are disconnected. In this paper, we align significant parts of these two libraries, by defining isomorphisms between their concepts, including the real numbers and algebraic structures. The isomorphisms allow us to transport theorems between the foundations and use the results from the libraries simultaneously.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将高阶逻辑与集合论形式化相结合。
Isabelle高阶Tarski Grothendieck对象逻辑在其基础中包括高阶逻辑和集合论,这允许导入Isabelle/HOL和Isabelle/Mizar的库。然而,这两个库独立地定义了所有的基本概念,这意味着两者中的结果是不相连的。在本文中,我们通过定义它们的概念之间的同构,包括实数和代数结构,来对齐这两个库的重要部分。同构允许我们在基础之间传递定理,并同时使用库的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Automated Reasoning
Journal of Automated Reasoning 工程技术-计算机:人工智能
CiteScore
3.60
自引率
9.10%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Journal of Automated Reasoning is an interdisciplinary journal that maintains a balance between theory, implementation and application. The spectrum of material published ranges from the presentation of a new inference rule with proof of its logical properties to a detailed account of a computer program designed to solve various problems in industry. The main fields covered are automated theorem proving, logic programming, expert systems, program synthesis and validation, artificial intelligence, computational logic, robotics, and various industrial applications. The papers share the common feature of focusing on several aspects of automated reasoning, a field whose objective is the design and implementation of a computer program that serves as an assistant in solving problems and in answering questions that require reasoning. The Journal of Automated Reasoning provides a forum and a means for exchanging information for those interested purely in theory, those interested primarily in implementation, and those interested in specific research and industrial applications.
期刊最新文献
Single-Set Cubical Categories and Their Formalisation with a Proof Assistant Towards a Scalable Proof Engine: A Performant Prototype Rewriting Primitive for Coq Verifying the Generalization of Deep Learning to Out-of-Distribution Domains Dependency Schemes in CDCL-Based QBF Solving: A Proof-Theoretic Study Verifying a Sequent Calculus Prover for First-Order Logic with Functions in Isabelle/HOL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1