Pump-probe x-ray microscopy of photo-induced magnetization dynamics at MHz repetition rates.

Pub Date : 2023-03-01 DOI:10.1063/4.0000167
Kathinka Gerlinger, Bastian Pfau, Martin Hennecke, Lisa-Marie Kern, Ingo Will, Tino Noll, Markus Weigand, Joachim Gräfe, Nick Träger, Michael Schneider, Christian M Günther, Dieter Engel, Gisela Schütz, Stefan Eisebitt
{"title":"Pump-probe x-ray microscopy of photo-induced magnetization dynamics at MHz repetition rates.","authors":"Kathinka Gerlinger,&nbsp;Bastian Pfau,&nbsp;Martin Hennecke,&nbsp;Lisa-Marie Kern,&nbsp;Ingo Will,&nbsp;Tino Noll,&nbsp;Markus Weigand,&nbsp;Joachim Gräfe,&nbsp;Nick Träger,&nbsp;Michael Schneider,&nbsp;Christian M Günther,&nbsp;Dieter Engel,&nbsp;Gisela Schütz,&nbsp;Stefan Eisebitt","doi":"10.1063/4.0000167","DOIUrl":null,"url":null,"abstract":"<p><p>We present time-resolved scanning x-ray microscopy measurements with picosecond photo-excitation via a tailored infrared pump laser at a scanning transmission x-ray microscope. Specifically, we image the laser-induced demagnetization and remagnetization of thin ferrimagnetic GdFe films proceeding on a few nanoseconds timescale. Controlling the heat load on the sample via additional reflector and heatsink layers allows us to conduct destruction-free measurements at a repetition rate of 50 MHz. Near-field enhancement of the photo-excitation and controlled annealing effects lead to laterally heterogeneous magnetization dynamics which we trace with 30 nm spatial resolution. Our work opens new opportunities to study photo-induced dynamics on the nanometer scale, with access to picosecond to nanosecond time scales, which is of technological relevance, especially in the field of magnetism.</p>","PeriodicalId":74877,"journal":{"name":"","volume":"10 2","pages":"024301"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038236/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present time-resolved scanning x-ray microscopy measurements with picosecond photo-excitation via a tailored infrared pump laser at a scanning transmission x-ray microscope. Specifically, we image the laser-induced demagnetization and remagnetization of thin ferrimagnetic GdFe films proceeding on a few nanoseconds timescale. Controlling the heat load on the sample via additional reflector and heatsink layers allows us to conduct destruction-free measurements at a repetition rate of 50 MHz. Near-field enhancement of the photo-excitation and controlled annealing effects lead to laterally heterogeneous magnetization dynamics which we trace with 30 nm spatial resolution. Our work opens new opportunities to study photo-induced dynamics on the nanometer scale, with access to picosecond to nanosecond time scales, which is of technological relevance, especially in the field of magnetism.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在MHz重复率下光诱导磁化动力学的泵-探针x射线显微镜。
我们提出了时间分辨扫描x射线显微镜测量皮秒光激发通过一个定制的红外泵浦激光器在扫描透射x射线显微镜。具体来说,我们在几纳秒的时间尺度上成像了激光诱导的铁磁GdFe薄膜的退磁和再磁化过程。通过额外的反射器和散热器层控制样品的热负荷,使我们能够以50 MHz的重复率进行无破坏的测量。光激发和受控退火效应的近场增强导致了横向非均匀磁化动力学,我们用30 nm的空间分辨率追踪了这一动态。我们的工作为在纳米尺度上研究光致动力学开辟了新的机会,具有皮秒到纳秒的时间尺度,这是技术相关的,特别是在磁性领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1