Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities.

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2023-11-01 Epub Date: 2023-05-31 DOI:10.1002/wnan.1909
Amir Valizadeh, Samira Asghari, Saleheh Abbaspoor, Abbas Jafari, Mortaza Raeisi, Younes Pilehvar
{"title":"Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities.","authors":"Amir Valizadeh, Samira Asghari, Saleheh Abbaspoor, Abbas Jafari, Mortaza Raeisi, Younes Pilehvar","doi":"10.1002/wnan.1909","DOIUrl":null,"url":null,"abstract":"<p><p>Nanofibers (NFs) with practical drug-loading capacities, high stability, and controllable release have caught the attention of investigators due to their potential applications in on-demand drug delivery devices. Developing novel and efficient multidisciplinary management of locoregional cancer treatment through the design of smart NF-based systems integrated with combined chemotherapy and hyperthermia could provide stronger therapeutic advantages. On the other hand, implanting directly at the tumor area is a remarkable benefit of hyperthermia NF-based drug delivery approaches. Hence, implantable smart hyperthermia NFs might be very hopeful for tumor treatment in the future and provide new avenues for developing highly efficient localized drug delivery systems. Indeed, features of the smart NFs lead to the construction of a reversibly flexible nanostructure that enables hyperthermia and facile switchable release of antitumor agents to eradicate cancer cells. Accordingly, this study covers recent updates on applications of implantable smart hyperthermia NFs regarding their current scope and future outlook. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1909"},"PeriodicalIF":6.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1909","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 3

Abstract

Nanofibers (NFs) with practical drug-loading capacities, high stability, and controllable release have caught the attention of investigators due to their potential applications in on-demand drug delivery devices. Developing novel and efficient multidisciplinary management of locoregional cancer treatment through the design of smart NF-based systems integrated with combined chemotherapy and hyperthermia could provide stronger therapeutic advantages. On the other hand, implanting directly at the tumor area is a remarkable benefit of hyperthermia NF-based drug delivery approaches. Hence, implantable smart hyperthermia NFs might be very hopeful for tumor treatment in the future and provide new avenues for developing highly efficient localized drug delivery systems. Indeed, features of the smart NFs lead to the construction of a reversibly flexible nanostructure that enables hyperthermia and facile switchable release of antitumor agents to eradicate cancer cells. Accordingly, this study covers recent updates on applications of implantable smart hyperthermia NFs regarding their current scope and future outlook. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于癌症治疗的可植入智能热疗纳米纤维:挑战与机遇。
纳米纤维具有实用的载药能力、高稳定性和释放可控等特点,在按需给药装置中具有潜在的应用前景,引起了研究人员的广泛关注。通过设计基于智能nf的系统与联合化疗和热疗相结合,开发局部区域癌症治疗的新型高效多学科管理可以提供更强的治疗优势。另一方面,直接植入肿瘤区域是基于热疗nf的给药方法的显著优点。因此,植入式智能热疗NFs可能在未来的肿瘤治疗中非常有希望,并为开发高效的局部药物输送系统提供了新的途径。事实上,智能NFs的特性导致了可逆柔性纳米结构的构建,使得热疗和抗肿瘤药物的快速切换释放能够根除癌细胞。因此,本研究涵盖了植入式智能热疗NFs应用的最新进展,包括其当前范围和未来前景。本文分类为:植入材料与外科技术、纳米材料与植入物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology NANOSCIENCE & NANOTECHNOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
16.60
自引率
2.30%
发文量
93
期刊介绍: Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists. Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.
期刊最新文献
Design and synthesis of bioinspired nanomaterials for biomedical application. Passive sweat wearable: A new paradigm in the wearable landscape toward enabling "detect to treat" opportunities. Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling. Raman spectroscopy and its plasmon-enhanced counterparts: A toolbox to probe protein dynamics and aggregation. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1