A New Transgenic Line for Rapid and Complete Neutrophil Ablation.

IF 1.4 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY Zebrafish Pub Date : 2022-06-01 DOI:10.1089/zeb.2022.0020
Christopher J Hall, Jonathan W Astin, Jeff S Mumm, David F Ackerley
{"title":"A New Transgenic Line for Rapid and Complete Neutrophil Ablation.","authors":"Christopher J Hall,&nbsp;Jonathan W Astin,&nbsp;Jeff S Mumm,&nbsp;David F Ackerley","doi":"10.1089/zeb.2022.0020","DOIUrl":null,"url":null,"abstract":"<p><p>Zebrafish lines expressing nitroreductase (NTR) in specific cell compartments, which sensitizes those cells to metronidazole (MTZ)-mediated ablation, have proven extremely useful for studying tissue regeneration and investigating cell function. In contrast to many cells, neutrophils are comparatively resistant to the NTR/MTZ targeted ablation strategy. Recently, a rationally engineered variant of NTR (NTR 2.0) has been described that exhibits greatly improved MTZ-mediated ablation efficacy in zebrafish. We show that a transgenic line with neutrophil-restricted expression of NTR 2.0 demonstrates complete neutrophil ablation, with an MTZ dose 100-fold less than current treatment regimens, and with treatment durations as short as 5 h.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":"19 3","pages":"109-113"},"PeriodicalIF":1.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246267/pdf/zeb.2022.0020.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2022.0020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Zebrafish lines expressing nitroreductase (NTR) in specific cell compartments, which sensitizes those cells to metronidazole (MTZ)-mediated ablation, have proven extremely useful for studying tissue regeneration and investigating cell function. In contrast to many cells, neutrophils are comparatively resistant to the NTR/MTZ targeted ablation strategy. Recently, a rationally engineered variant of NTR (NTR 2.0) has been described that exhibits greatly improved MTZ-mediated ablation efficacy in zebrafish. We show that a transgenic line with neutrophil-restricted expression of NTR 2.0 demonstrates complete neutrophil ablation, with an MTZ dose 100-fold less than current treatment regimens, and with treatment durations as short as 5 h.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种快速完全消融中性粒细胞的转基因新品系。
斑马鱼细胞系在特定的细胞区室中表达硝基还原酶(NTR),使这些细胞对甲硝唑(MTZ)介导的消融敏感,已被证明在研究组织再生和研究细胞功能方面非常有用。与许多细胞相比,中性粒细胞对NTR/MTZ靶向消融策略具有相对抗性。最近,一种合理设计的NTR变体(NTR 2.0)在斑马鱼中显示出极大改善的mtz介导的消融效果。我们发现,中性粒细胞限制性表达NTR 2.0的转基因细胞系显示中性粒细胞完全消融,MTZ剂量比当前治疗方案少100倍,治疗时间短至5小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Zebrafish
Zebrafish DEVELOPMENTAL BIOLOGY-ZOOLOGY
CiteScore
3.60
自引率
5.00%
发文量
29
审稿时长
3 months
期刊介绍: Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease. Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage. Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community. TechnoFish features two types of articles: TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community Zebrafish coverage includes: Comparative genomics and evolution Molecular/cellular mechanisms of cell growth Genetic analysis of embryogenesis and disease Toxicological and infectious disease models Models for neurological disorders and aging New methods, tools, and experimental approaches Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.
期刊最新文献
Fish in a Dish: Using Zebrafish in Authentic Science Research Experiences for Under-represented High School Students from West Virginia. Novel Development of Magnetic Resonance Imaging to Quantify the Structural Anatomic Growth of Diverse Organs in Adult and Mutant Zebrafish. Zebrafish (Danio rerio) Gynogenetic Production by Heat Shock: Comparison Between Mitotic and Meiotic Treatment. Curcumin-Encapsulated Nanomicelles Promote Tissue Regeneration in Zebrafish Eleutheroembryo. Incorporating Primer Amplification Efficiencies in Quantitative Reverse Transcription Polymerase Chain Reaction Experiments; Considerations for Differential Gene Expression Analyses in Zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1